Critchley, Richard, Corni, Ilaria, Wharton, Julian, Walsh, Frank, Wood, Robert and Stokes, Keith (2020) Experimental and computation assessment of thermomechanical effects during auxetic foam fabrication. Scientific Reports, 10 (1), [18301]. (doi:10.1038/s41598-020-75298-w).
Abstract
Auxetic foams continue to interest researchers owing to their unique and enhanced properties. Existing studies attest to the importance of fabrication mechanisms and parameters. However, disparity in thermo-mechanical parameters has left much debate as to which factors dominate fabrication output quality. This paper provides experimental, computational, and statistical insights into the mechanisms that enable auxetic foams to be produced, using key parameters reported within the literature: porosity; heating time; and volumetric compression ratio. To advance the considerations on manufacturing parameter dominance, both study design and scale have been optimised to enable statistical inferences to be drawn. Whilst being unusual for a manufacturing domain, such additional analysis provides more conclusive evidence of auxetic properties and highlights the supremacy of volumetric compression ratio in predicting Poisson’s ratio outcomes in the manufacture process. Furthermore statistical results are exploited to formulate key recommendations for those wishing to maximise/optimise auxetic foam production.
More information
Identifiers
Catalogue record
Export record
Altmetrics
Contributors
University divisions
- Faculties (pre 2018 reorg) > Faculty of Engineering and the Environment (pre 2018 reorg)
- Faculties (pre 2018 reorg) > Faculty of Engineering and the Environment (pre 2018 reorg) > Southampton Marine & Maritime Institute (pre 2018 reorg)
- Current Faculties > Faculty of Engineering and Physical Sciences > School of Engineering > Mechanical Engineering > nCATS Group
Mechanical Engineering > nCATS Group - Current Faculties > Faculty of Engineering and Physical Sciences > School of Engineering > Mechanical Engineering
Mechanical Engineering - Current Faculties > Faculty of Engineering and Physical Sciences
- Current Faculties > Faculty of Engineering and Physical Sciences > Enterprise > nC2
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.