Room-temperature Cu(II) radical-triggered alkyne C–H activation
Room-temperature Cu(II) radical-triggered alkyne C–H activation
A dimeric Cu(II) complex [Cu(II)2L2(μ2-Cl)Cl] (1) built from an asymmetric tridentate ligand (2-(((2-aminocyclohexyl)imino)methyl)-4,6-di-tert-butylphenol) and weakly coordinating anions has been synthesized and structurally characterized. In dichloromethane solution, 1 exists in a monomeric [Cu(II)LCl] (1′) (85%)–dimeric (1) (15%) equilibrium, and cyclic voltammetry (CV) and electron paramagnetic resonance (EPR) studies indicate structural stability and redox retention. Addition of phenylacetylene to the CH2Cl2 solution populates 1′ and leads to the formation of a transient radical species. Theoretical studies support this notion and show that the radical initiates an alkyne C–H bond activation process via a four-membered ring (Cu(II)–O···H–Calkyne) intermediate. This unusual C–H activation method is applicable for the efficient synthesis of propargylamines, without additives, within 16 h, at low loadings and in noncoordinating solvents including late-stage functionalization of important bioactive molecules. Single-crystal X-ray diffraction studies, postcatalysis, confirmed the framework’s stability and showed that the metal center preserves its oxidation state. The scope and limitations of this unconventional protocol are discussed.
1937–1948
Devonport, Jack
59a5eb3b-024f-4457-b9a5-49e00f8f6c11
Sully, Lauren
439accd3-ab69-40cb-a4a0-26a937201307
Boudalis, Athanassios K.
24132fb2-5462-457c-9982-d687f311b28f
Hassell-Hart, Storm
cb87c9ec-7c5c-4ba5-8893-1348694eb4bd
Leech, Matthew C.
a94c7ae8-77bb-4be5-af22-5dad3f74e25b
Lam, Kevin
e61a4e25-2195-4896-ae4c-c8ba4b5a946a
Abdul-Sada, Alaa
03b55c32-8062-4b73-926d-f243ca078a83
Tizzard, Graham J.
8474c0fa-40df-43a6-a662-7f3c4722dbf2
Coles, Simon J.
3116f58b-c30c-48cf-bdd5-397d1c1fecf8
Spencer, John
a3cf55cd-a4c7-4af6-b16c-96c8fb8c4cf4
Vargas, Alfredo
81648c3f-59d5-4d8d-ad72-273ec8229054
Kostakis, George E.
dd72c724-c82e-4891-aa68-ccdb42cc6cb8
Devonport, Jack
59a5eb3b-024f-4457-b9a5-49e00f8f6c11
Sully, Lauren
439accd3-ab69-40cb-a4a0-26a937201307
Boudalis, Athanassios K.
24132fb2-5462-457c-9982-d687f311b28f
Hassell-Hart, Storm
cb87c9ec-7c5c-4ba5-8893-1348694eb4bd
Leech, Matthew C.
a94c7ae8-77bb-4be5-af22-5dad3f74e25b
Lam, Kevin
e61a4e25-2195-4896-ae4c-c8ba4b5a946a
Abdul-Sada, Alaa
03b55c32-8062-4b73-926d-f243ca078a83
Tizzard, Graham J.
8474c0fa-40df-43a6-a662-7f3c4722dbf2
Coles, Simon J.
3116f58b-c30c-48cf-bdd5-397d1c1fecf8
Spencer, John
a3cf55cd-a4c7-4af6-b16c-96c8fb8c4cf4
Vargas, Alfredo
81648c3f-59d5-4d8d-ad72-273ec8229054
Kostakis, George E.
dd72c724-c82e-4891-aa68-ccdb42cc6cb8
Devonport, Jack, Sully, Lauren, Boudalis, Athanassios K., Hassell-Hart, Storm, Leech, Matthew C., Lam, Kevin, Abdul-Sada, Alaa, Tizzard, Graham J., Coles, Simon J., Spencer, John, Vargas, Alfredo and Kostakis, George E.
(2021)
Room-temperature Cu(II) radical-triggered alkyne C–H activation.
JACS AU, 1 (11), .
(doi:10.1021/jacsau.1c00310).
(In Press)
Abstract
A dimeric Cu(II) complex [Cu(II)2L2(μ2-Cl)Cl] (1) built from an asymmetric tridentate ligand (2-(((2-aminocyclohexyl)imino)methyl)-4,6-di-tert-butylphenol) and weakly coordinating anions has been synthesized and structurally characterized. In dichloromethane solution, 1 exists in a monomeric [Cu(II)LCl] (1′) (85%)–dimeric (1) (15%) equilibrium, and cyclic voltammetry (CV) and electron paramagnetic resonance (EPR) studies indicate structural stability and redox retention. Addition of phenylacetylene to the CH2Cl2 solution populates 1′ and leads to the formation of a transient radical species. Theoretical studies support this notion and show that the radical initiates an alkyne C–H bond activation process via a four-membered ring (Cu(II)–O···H–Calkyne) intermediate. This unusual C–H activation method is applicable for the efficient synthesis of propargylamines, without additives, within 16 h, at low loadings and in noncoordinating solvents including late-stage functionalization of important bioactive molecules. Single-crystal X-ray diffraction studies, postcatalysis, confirmed the framework’s stability and showed that the metal center preserves its oxidation state. The scope and limitations of this unconventional protocol are discussed.
Text
Template for Electronic Submission to ACS Journals_final_revised_non_highlighted_010921
- Accepted Manuscript
Text
jacsau.1c00310
- Version of Record
More information
Accepted/In Press date: 6 October 2021
Identifiers
Local EPrints ID: 454662
URI: http://eprints.soton.ac.uk/id/eprint/454662
ISSN: 2691-3704
PURE UUID: 81f55dcb-e2d4-4ee7-96ea-6890d3365939
Catalogue record
Date deposited: 18 Feb 2022 17:35
Last modified: 17 Mar 2024 02:53
Export record
Altmetrics
Contributors
Author:
Jack Devonport
Author:
Lauren Sully
Author:
Athanassios K. Boudalis
Author:
Storm Hassell-Hart
Author:
Matthew C. Leech
Author:
Kevin Lam
Author:
Alaa Abdul-Sada
Author:
John Spencer
Author:
Alfredo Vargas
Author:
George E. Kostakis
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics