Generating images of hydrated pollen grains using deep learning
Generating images of hydrated pollen grains using deep learning
Pollen grains dehydrate during their development and following their departure from the host stigma. Since the size and shape of a pollen grain can be dependent on environmental conditions, being able to predict both of these factors for hydrated pollen grains from their dehydrated state could be beneficial in the fields of climate science, agriculture, and palynology. Here, we use deep learning to transform images of dehydrated Ranunculus pollen grains into images of hydrated Ranunculus pollen grains. We also then use a deep learning neural network that was trained on experimental images of different genera of pollen grains to identify the hydrated pollen grains from the generated transformed images, to test the accuracy of the image generation neural network. This pilot work demonstrates the first steps needed towards creating a general deep learning-based rehydration model that could be useful in understanding and predicting pollen morphology.
Grant-Jacob, James
c5d144d8-3c43-4195-8e80-edd96bfda91b
Praeger, Matthew
84575f28-4530-4f89-9355-9c5b6acc6cac
Eason, R.W.
e38684c3-d18c-41b9-a4aa-def67283b020
Mills, Benjamin
05f1886e-96ef-420f-b856-4115f4ab36d0
26 April 2022
Grant-Jacob, James
c5d144d8-3c43-4195-8e80-edd96bfda91b
Praeger, Matthew
84575f28-4530-4f89-9355-9c5b6acc6cac
Eason, R.W.
e38684c3-d18c-41b9-a4aa-def67283b020
Mills, Benjamin
05f1886e-96ef-420f-b856-4115f4ab36d0
Grant-Jacob, James, Praeger, Matthew, Eason, R.W. and Mills, Benjamin
(2022)
Generating images of hydrated pollen grains using deep learning.
IOP SciNotes, 3 (2).
(doi:10.1088/2633-1357/ac6780).
Abstract
Pollen grains dehydrate during their development and following their departure from the host stigma. Since the size and shape of a pollen grain can be dependent on environmental conditions, being able to predict both of these factors for hydrated pollen grains from their dehydrated state could be beneficial in the fields of climate science, agriculture, and palynology. Here, we use deep learning to transform images of dehydrated Ranunculus pollen grains into images of hydrated Ranunculus pollen grains. We also then use a deep learning neural network that was trained on experimental images of different genera of pollen grains to identify the hydrated pollen grains from the generated transformed images, to test the accuracy of the image generation neural network. This pilot work demonstrates the first steps needed towards creating a general deep learning-based rehydration model that could be useful in understanding and predicting pollen morphology.
Text
Grant-Jacob_2022_IOP_SciNotes_3_024001
- Version of Record
More information
Accepted/In Press date: 14 April 2022
Published date: 26 April 2022
Identifiers
Local EPrints ID: 456890
URI: http://eprints.soton.ac.uk/id/eprint/456890
PURE UUID: c383cb8d-9d24-4e23-8ca5-b7eae4bf83fc
Catalogue record
Date deposited: 16 May 2022 16:31
Last modified: 17 Mar 2024 03:22
Export record
Altmetrics
Contributors
Author:
James Grant-Jacob
Author:
Matthew Praeger
Author:
R.W. Eason
Author:
Benjamin Mills
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics