The University of Southampton
University of Southampton Institutional Repository

The Dark Energy Survey supernova programme: modelling selection efficiency and observed core-collapse supernova contamination

The Dark Energy Survey supernova programme: modelling selection efficiency and observed core-collapse supernova contamination
The Dark Energy Survey supernova programme: modelling selection efficiency and observed core-collapse supernova contamination
The analysis of current and future cosmological surveys of Type Ia supernovae (SNe Ia) at high redshift depends on the accurate photometric classification of the SN events detected. Generating realistic simulations of photometric SN surveys constitutes an essential step for training and testing photometric classification algorithms, and for correcting biases introduced by selection effects and contamination arising from core-collapse SNe in the photometric SN Ia samples. We use published SN time-series spectrophotometric templates, rates, luminosity functions, and empirical relationships between SNe and their host galaxies to construct a framework for simulating photometric SN surveys. We present this framework in the context of the Dark Energy Survey (DES) 5-yr photometric SN sample, comparing our simulations of DES with the observed DES transient populations. We demonstrate excellent agreement in many distributions, including Hubble residuals, between our simulations and data. We estimate the core collapse fraction expected in the DES SN sample after selection requirements are applied and before photometric classification. After testing different modelling choices and astrophysical assumptions underlying our simulation, we find that the predicted contamination varies from 7.2 to 11.7 per cent, with an average of 8.8 per cent and an r.m.s. of 1.1 per cent. Our simulations are the first to reproduce the observed photometric SN and host galaxy properties in high-redshift surveys without fine-tuning the input parameters. The simulation methods presented here will be a critical component of the cosmology analysis of the DES photometric SN Ia sample: correcting for biases arising from contamination, and evaluating the associated systematic uncertainty.
surveys, supernovae: general, cosmology: observations
1365-2966
2819-2839
Vincenzi, M.
a15a3563-56f2-4692-b192-36b745e67d0b
Sullivan, M.
2f31f9fa-8e79-4b35-98e2-0cb38f503850
Graur, O.
b342cb7b-f64c-4d0d-926e-d07cd0a5ba72
Brout, D.
2e6c15c6-38ee-4593-b3b6-3c3f406b4fb1
Frohmaier, C.
9e031e04-b5ac-4949-80a5-92e5e13201c0
Galbany, L.
00c01d75-7cd2-4583-894b-0d64cc95674d
Gutiérrez, C. P.
31c32c66-9f71-4e61-8e3a-b83498c995c9
Hinton, S. R.
9e2f00d6-7026-4491-a28e-17d5880f65d1
Kelsey, L.
e468815b-9246-4e0f-a6d5-b037765590e4
Kessler, R.
73a1d852-9d13-408f-94c1-2bd3241d47e5
Kovacs, E.
3142e0ee-068e-4c1f-89d8-afcf870d1059
Kuhlmann, S.
e3c8cf69-3749-45fc-89cf-8a6499ac12ba
Lasker, J.
2ba12279-36f0-4989-b66f-7685b47084d9
Lidman, C.
70c80609-d55e-4ca6-b057-aed4a00b4b89
Möller, A.
64e6f7fe-41ac-498b-9f69-c88a0f7981c4
Nichol, R. C.
0c9a8540-1f97-4fd7-bc77-e18db450e632
Sako, M.
c55b2dbb-04bd-4759-8c37-4d640f09c286
Scolnic, D.
dcdbe5db-52ef-4d69-93d1-3f337046dcfa
Swann, E.
4cef604c-3aa6-4023-b480-cf54f0cbfc20
Wiseman, P.
865f95f8-2200-46a8-bd5e-3ee30bb44072
Asorey, J.
c8481389-854f-41ed-9fa5-adcb64ed8be7
Tucker, B. E.
7dc5b046-5bd6-4392-9984-eb1485496e4e
Aguena, M.
5a2ce5af-bd27-4b44-a1c0-d4ea339a59b2
Allam, S.
ddcc4444-2731-4ed7-b2f0-10dc1b54fa8c
Avila, S.
3b936a9d-6d15-461b-a5ae-f501ddeb99b9
Bertin, E.
a63c032a-585e-4a22-88be-42054701d901
Burke, D. L.
0d20fba0-9285-4cb4-b076-312166fc7ad7
Carnero Rosell, A.
d66191ef-a014-4029-bfe8-e9b3c653e3be
Carrasco Kind, M.
b569a608-55e3-4a2b-8875-d6602c32c980
Carretero, J.
081b0f5d-7e69-469c-a22d-5b851f9b8d1d
Castander, F. J.
b61356c2-f7f5-4da7-9322-b9eda0b0081a
Choi, A.
d021c699-3c3d-4ef9-9469-d069fcdbf25a
Costanzi, M.
400140cc-a71b-498f-890d-b08209fc5b17
da Costa, L. N.
b1ed9fd9-b99a-4012-8112-79cba46d8a23
Pereira, M. E. S.
31543982-a9f3-4226-be05-4a7583b27a1b
De Vicente, J.
f1d6022a-1d82-4b26-b421-4627aa5a5568
Desai, S.
9fb3d948-7af8-43e1-8c9c-a11b6cc376ce
Diehl, H. T.
cf996f45-85cd-43df-b621-3032f9527150
Doel, P.
00d69910-6075-4a52-9c7b-57e947a3b171
Everett, S.
7d8a68d2-6ef6-4710-9268-f6733a2e3b0b
Ferrero, I.
39cc50d6-f2ae-4faa-a2b5-21da164fe6e1
Fosalba, P.
7309d371-b57b-4fb5-99f2-1dd419e46285
Frieman, J.
6c34b206-537c-429c-9aeb-5df1d1e5e656
García-Bellido, J.
0d901d62-f268-4982-a08b-880c578ab3d8
Gaztanaga, E.
3a3f63dd-9666-448c-9ec6-10e53fc0dc1a
Gerdes, D. W.
63df801a-6703-4911-902c-1115327d79dd
Gruen, D.
2117fe8b-f1bc-4e4b-a20c-91d3b2c90ba3
Gruendl, R. A.
81783218-3c05-4a4a-8f7b-d123d50ba027
Gutierrez, G.
78403287-6c1e-4238-9238-06c3a714f5cd
Hollowood, D. L.
cc89dbc7-a510-41c7-8c1a-f630716ccf56
The Dark Energy Survey Collaboration
Vincenzi, M.
a15a3563-56f2-4692-b192-36b745e67d0b
Sullivan, M.
2f31f9fa-8e79-4b35-98e2-0cb38f503850
Graur, O.
b342cb7b-f64c-4d0d-926e-d07cd0a5ba72
Brout, D.
2e6c15c6-38ee-4593-b3b6-3c3f406b4fb1
Frohmaier, C.
9e031e04-b5ac-4949-80a5-92e5e13201c0
Galbany, L.
00c01d75-7cd2-4583-894b-0d64cc95674d
Gutiérrez, C. P.
31c32c66-9f71-4e61-8e3a-b83498c995c9
Hinton, S. R.
9e2f00d6-7026-4491-a28e-17d5880f65d1
Kelsey, L.
e468815b-9246-4e0f-a6d5-b037765590e4
Kessler, R.
73a1d852-9d13-408f-94c1-2bd3241d47e5
Kovacs, E.
3142e0ee-068e-4c1f-89d8-afcf870d1059
Kuhlmann, S.
e3c8cf69-3749-45fc-89cf-8a6499ac12ba
Lasker, J.
2ba12279-36f0-4989-b66f-7685b47084d9
Lidman, C.
70c80609-d55e-4ca6-b057-aed4a00b4b89
Möller, A.
64e6f7fe-41ac-498b-9f69-c88a0f7981c4
Nichol, R. C.
0c9a8540-1f97-4fd7-bc77-e18db450e632
Sako, M.
c55b2dbb-04bd-4759-8c37-4d640f09c286
Scolnic, D.
dcdbe5db-52ef-4d69-93d1-3f337046dcfa
Swann, E.
4cef604c-3aa6-4023-b480-cf54f0cbfc20
Wiseman, P.
865f95f8-2200-46a8-bd5e-3ee30bb44072
Asorey, J.
c8481389-854f-41ed-9fa5-adcb64ed8be7
Tucker, B. E.
7dc5b046-5bd6-4392-9984-eb1485496e4e
Aguena, M.
5a2ce5af-bd27-4b44-a1c0-d4ea339a59b2
Allam, S.
ddcc4444-2731-4ed7-b2f0-10dc1b54fa8c
Avila, S.
3b936a9d-6d15-461b-a5ae-f501ddeb99b9
Bertin, E.
a63c032a-585e-4a22-88be-42054701d901
Burke, D. L.
0d20fba0-9285-4cb4-b076-312166fc7ad7
Carnero Rosell, A.
d66191ef-a014-4029-bfe8-e9b3c653e3be
Carrasco Kind, M.
b569a608-55e3-4a2b-8875-d6602c32c980
Carretero, J.
081b0f5d-7e69-469c-a22d-5b851f9b8d1d
Castander, F. J.
b61356c2-f7f5-4da7-9322-b9eda0b0081a
Choi, A.
d021c699-3c3d-4ef9-9469-d069fcdbf25a
Costanzi, M.
400140cc-a71b-498f-890d-b08209fc5b17
da Costa, L. N.
b1ed9fd9-b99a-4012-8112-79cba46d8a23
Pereira, M. E. S.
31543982-a9f3-4226-be05-4a7583b27a1b
De Vicente, J.
f1d6022a-1d82-4b26-b421-4627aa5a5568
Desai, S.
9fb3d948-7af8-43e1-8c9c-a11b6cc376ce
Diehl, H. T.
cf996f45-85cd-43df-b621-3032f9527150
Doel, P.
00d69910-6075-4a52-9c7b-57e947a3b171
Everett, S.
7d8a68d2-6ef6-4710-9268-f6733a2e3b0b
Ferrero, I.
39cc50d6-f2ae-4faa-a2b5-21da164fe6e1
Fosalba, P.
7309d371-b57b-4fb5-99f2-1dd419e46285
Frieman, J.
6c34b206-537c-429c-9aeb-5df1d1e5e656
García-Bellido, J.
0d901d62-f268-4982-a08b-880c578ab3d8
Gaztanaga, E.
3a3f63dd-9666-448c-9ec6-10e53fc0dc1a
Gerdes, D. W.
63df801a-6703-4911-902c-1115327d79dd
Gruen, D.
2117fe8b-f1bc-4e4b-a20c-91d3b2c90ba3
Gruendl, R. A.
81783218-3c05-4a4a-8f7b-d123d50ba027
Gutierrez, G.
78403287-6c1e-4238-9238-06c3a714f5cd
Hollowood, D. L.
cc89dbc7-a510-41c7-8c1a-f630716ccf56

The Dark Energy Survey Collaboration (2021) The Dark Energy Survey supernova programme: modelling selection efficiency and observed core-collapse supernova contamination. Monthly Notices of the Royal Astronomical Society, 505 (2), 2819-2839. (doi:10.1093/mnras/stab1353).

Record type: Article

Abstract

The analysis of current and future cosmological surveys of Type Ia supernovae (SNe Ia) at high redshift depends on the accurate photometric classification of the SN events detected. Generating realistic simulations of photometric SN surveys constitutes an essential step for training and testing photometric classification algorithms, and for correcting biases introduced by selection effects and contamination arising from core-collapse SNe in the photometric SN Ia samples. We use published SN time-series spectrophotometric templates, rates, luminosity functions, and empirical relationships between SNe and their host galaxies to construct a framework for simulating photometric SN surveys. We present this framework in the context of the Dark Energy Survey (DES) 5-yr photometric SN sample, comparing our simulations of DES with the observed DES transient populations. We demonstrate excellent agreement in many distributions, including Hubble residuals, between our simulations and data. We estimate the core collapse fraction expected in the DES SN sample after selection requirements are applied and before photometric classification. After testing different modelling choices and astrophysical assumptions underlying our simulation, we find that the predicted contamination varies from 7.2 to 11.7 per cent, with an average of 8.8 per cent and an r.m.s. of 1.1 per cent. Our simulations are the first to reproduce the observed photometric SN and host galaxy properties in high-redshift surveys without fine-tuning the input parameters. The simulation methods presented here will be a critical component of the cosmology analysis of the DES photometric SN Ia sample: correcting for biases arising from contamination, and evaluating the associated systematic uncertainty.

Other
pdf - Accepted Manuscript
Available under License Creative Commons Attribution.
Download (1MB)

More information

Accepted/In Press date: 23 April 2021
e-pub ahead of print date: 26 May 2021
Published date: 1 August 2021
Keywords: surveys, supernovae: general, cosmology: observations

Identifiers

Local EPrints ID: 457728
URI: http://eprints.soton.ac.uk/id/eprint/457728
ISSN: 1365-2966
PURE UUID: d954f695-d914-422e-a7e8-503cc21b4173
ORCID for M. Sullivan: ORCID iD orcid.org/0000-0001-9053-4820
ORCID for P. Wiseman: ORCID iD orcid.org/0000-0002-3073-1512

Catalogue record

Date deposited: 16 Jun 2022 00:26
Last modified: 17 Mar 2024 03:48

Export record

Altmetrics

Contributors

Author: M. Vincenzi
Author: M. Sullivan ORCID iD
Author: O. Graur
Author: D. Brout
Author: C. Frohmaier
Author: L. Galbany
Author: C. P. Gutiérrez
Author: S. R. Hinton
Author: L. Kelsey
Author: R. Kessler
Author: E. Kovacs
Author: S. Kuhlmann
Author: J. Lasker
Author: C. Lidman
Author: A. Möller
Author: R. C. Nichol
Author: M. Sako
Author: D. Scolnic
Author: E. Swann
Author: P. Wiseman ORCID iD
Author: J. Asorey
Author: B. E. Tucker
Author: M. Aguena
Author: S. Allam
Author: S. Avila
Author: E. Bertin
Author: D. L. Burke
Author: A. Carnero Rosell
Author: M. Carrasco Kind
Author: J. Carretero
Author: F. J. Castander
Author: A. Choi
Author: M. Costanzi
Author: L. N. da Costa
Author: M. E. S. Pereira
Author: J. De Vicente
Author: S. Desai
Author: H. T. Diehl
Author: P. Doel
Author: S. Everett
Author: I. Ferrero
Author: P. Fosalba
Author: J. Frieman
Author: J. García-Bellido
Author: E. Gaztanaga
Author: D. W. Gerdes
Author: D. Gruen
Author: R. A. Gruendl
Author: G. Gutierrez
Author: D. L. Hollowood
Corporate Author: The Dark Energy Survey Collaboration

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×