Quantum approximate optimization algorithm based maximum likelihood detection
Quantum approximate optimization algorithm based maximum likelihood detection
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices, where quantum approximation optimization algorithms (QAOAs) constitute promising candidates for demonstrating tangible quantum advantages based on NISQ devices. In this paper, we consider the maximum likelihood (ML) detection problem of binary symbols transmitted over a multiple-input and multiple-output (MIMO) channel, where finding the optimal solution is exponentially hard using classical computers. Here, we apply the QAOA for the ML detection by encoding the problem of interest into a level-p QAOA circuit having 2p variational parameters, which can be optimized by classical optimizers. This level-p QAOA circuit is constructed by applying the prepared Hamiltonian to our problem and the initial Hamiltonian alternately in p consecutive rounds. More explicitly, we first encode the optimal solution of the ML detection problem into the ground state of a problem Hamiltonian. Using the quantum adiabatic evolution technique, we provide both analytical and numerical results for characterizing the evolution of the eigenvalues of the quantum system used for ML detection. Then, for level-1 QAOA circuits, we derive the analytical expressions of the expectation values of the QAOA and discuss the complexity of the QAOA based ML detector. Explicitly, we evaluate the computational complexity of the classical optimizer used and the storage requirement of simulating the QAOA. Finally, we evaluate the bit error rate (BER) of the QAOA based ML detector and compare it both to the classical ML detector and to the classical MMSE detector, demonstrating that the QAOA based ML detector is capable of approaching the performance of the classical ML detector. This paves the way for a host of large-scale classical optimization problems to be solved by NISQ computers.
Cui, Jingjing
dbe3c3ed-762f-4abf-bd7b-8d2737f2f0fc
Xiong, Yifeng
f93bfe9b-7a6d-47e8-a0a8-7f4f6632ab21
Ng, Soon Xin
e19a63b0-0f12-4591-ab5f-554820d5f78c
Hanzo, Lajos
66e7266f-3066-4fc0-8391-e000acce71a1
Cui, Jingjing
dbe3c3ed-762f-4abf-bd7b-8d2737f2f0fc
Xiong, Yifeng
f93bfe9b-7a6d-47e8-a0a8-7f4f6632ab21
Ng, Soon Xin
e19a63b0-0f12-4591-ab5f-554820d5f78c
Hanzo, Lajos
66e7266f-3066-4fc0-8391-e000acce71a1
Cui, Jingjing, Xiong, Yifeng, Ng, Soon Xin and Hanzo, Lajos
(2022)
Quantum approximate optimization algorithm based maximum likelihood detection.
IEEE Transactions on Communications.
(In Press)
Abstract
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices, where quantum approximation optimization algorithms (QAOAs) constitute promising candidates for demonstrating tangible quantum advantages based on NISQ devices. In this paper, we consider the maximum likelihood (ML) detection problem of binary symbols transmitted over a multiple-input and multiple-output (MIMO) channel, where finding the optimal solution is exponentially hard using classical computers. Here, we apply the QAOA for the ML detection by encoding the problem of interest into a level-p QAOA circuit having 2p variational parameters, which can be optimized by classical optimizers. This level-p QAOA circuit is constructed by applying the prepared Hamiltonian to our problem and the initial Hamiltonian alternately in p consecutive rounds. More explicitly, we first encode the optimal solution of the ML detection problem into the ground state of a problem Hamiltonian. Using the quantum adiabatic evolution technique, we provide both analytical and numerical results for characterizing the evolution of the eigenvalues of the quantum system used for ML detection. Then, for level-1 QAOA circuits, we derive the analytical expressions of the expectation values of the QAOA and discuss the complexity of the QAOA based ML detector. Explicitly, we evaluate the computational complexity of the classical optimizer used and the storage requirement of simulating the QAOA. Finally, we evaluate the bit error rate (BER) of the QAOA based ML detector and compare it both to the classical ML detector and to the classical MMSE detector, demonstrating that the QAOA based ML detector is capable of approaching the performance of the classical ML detector. This paves the way for a host of large-scale classical optimization problems to be solved by NISQ computers.
Text
qaoa_ml_acc
- Accepted Manuscript
More information
Accepted/In Press date: 2 June 2022
Identifiers
Local EPrints ID: 458034
URI: http://eprints.soton.ac.uk/id/eprint/458034
ISSN: 0090-6778
PURE UUID: 55e87a7a-8915-4140-82fd-1b18398c3c84
Catalogue record
Date deposited: 27 Jun 2022 16:54
Last modified: 17 Mar 2024 02:46
Export record
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics