The University of Southampton
University of Southampton Institutional Repository

Mesoporous nickel - an odyssey through synthesis, characterisation and application to electrochemical power devices

Mesoporous nickel - an odyssey through synthesis, characterisation and application to electrochemical power devices
Mesoporous nickel - an odyssey through synthesis, characterisation and application to electrochemical power devices

This thesis describes the synthesis, characterisation and application of mesoporous nickel to electrochemical technologies.  Mesoporous nickel was synthesised by electroreduction of nickel salts within the aqueous domains of self-assembled liquid crystalline templates.  These materials were characterised structurally and electrochemically.

Materials with both hexagonal and bicontinuous cubic pore geometry with pore sizes of the former between 3.5 and 7 nm were fabricated with appropriate selection of the surfactant template and deposition conditions.  Pores were shown to be of uniform diameter and possessing long range continuity.  Electrochemical characterisation revealed a very high capacity for charge storage in alkaline solution (up to 824 mC cm-2 for a 0.65 μm thick electrode), coupled with extremely rapid rates of charge transfer.

These properties were used to create a supercapacitor device utilising aqueous chemistry and consisting of all-mesoporous electrodes with exceptionally high power and energy densities.  Cyclic voltammetry and potential step experiments demonstrated delivery of 222 mC cm-2 or 166 mA.h g-1  (of nickel electrode) in 50 ms at a mean discharge voltage of 1.18 V using an aqueous electrolyte.  This translates into energy and power densities of 706 kJ kg-1 and 14.1 MW kg-1 respectively for the Ni/Ni(OH)2 electrode.  Cycling behaviour of this device was also unique in that charge storage capacity was observed to increase by 10% over 15000 cycles.

University of Southampton
Nelson, Phillip Andrew
8244fe4a-6b5d-4587-ae48-acd93ab291c9
Nelson, Phillip Andrew
8244fe4a-6b5d-4587-ae48-acd93ab291c9

Nelson, Phillip Andrew (2003) Mesoporous nickel - an odyssey through synthesis, characterisation and application to electrochemical power devices. University of Southampton, Doctoral Thesis.

Record type: Thesis (Doctoral)

Abstract

This thesis describes the synthesis, characterisation and application of mesoporous nickel to electrochemical technologies.  Mesoporous nickel was synthesised by electroreduction of nickel salts within the aqueous domains of self-assembled liquid crystalline templates.  These materials were characterised structurally and electrochemically.

Materials with both hexagonal and bicontinuous cubic pore geometry with pore sizes of the former between 3.5 and 7 nm were fabricated with appropriate selection of the surfactant template and deposition conditions.  Pores were shown to be of uniform diameter and possessing long range continuity.  Electrochemical characterisation revealed a very high capacity for charge storage in alkaline solution (up to 824 mC cm-2 for a 0.65 μm thick electrode), coupled with extremely rapid rates of charge transfer.

These properties were used to create a supercapacitor device utilising aqueous chemistry and consisting of all-mesoporous electrodes with exceptionally high power and energy densities.  Cyclic voltammetry and potential step experiments demonstrated delivery of 222 mC cm-2 or 166 mA.h g-1  (of nickel electrode) in 50 ms at a mean discharge voltage of 1.18 V using an aqueous electrolyte.  This translates into energy and power densities of 706 kJ kg-1 and 14.1 MW kg-1 respectively for the Ni/Ni(OH)2 electrode.  Cycling behaviour of this device was also unique in that charge storage capacity was observed to increase by 10% over 15000 cycles.

Text
906362.pdf - Version of Record
Available under License University of Southampton Thesis Licence.
Download (32MB)

More information

Published date: 2003

Identifiers

Local EPrints ID: 465067
URI: http://eprints.soton.ac.uk/id/eprint/465067
PURE UUID: c9e5c724-da75-4a2b-b20c-19ada06a6ed3

Catalogue record

Date deposited: 05 Jul 2022 00:21
Last modified: 16 Mar 2024 19:55

Export record

Contributors

Author: Phillip Andrew Nelson

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×