The flaw in the firewall argument
The flaw in the firewall argument
A lot of confusion surrounds the issue of black hole complementarity, because the question has been considered without discussing the mechanism which guarantees unitarity. Considering such a mechanism leads to the following: (1) The Hawking quanta with energy E of order the black hole temperature T carry information, and so only appropriate processes involving E>>T quanta can have any possible complementary description with an information-free horizon; (2) The stretched horizon describes all possible black hole states with a given mass M, and it must expand out to a distance s_{bubble} before it can accept additional infalling bits; (3) The Hawking radiation has a specific low temperature T, and infalling quanta interact significantly with it only within a distance s_{alpha} of the horizon. One finds s_{alpha} << s_{bubble} for E>>T, and this removes the argument against complementarity recently made by Almheiri et al. In particular, the condition E>>T leads to the notion of 'fuzzball complementarity', where the modes around the horizon are indeed correctly entangled in the complementary picture to give the vacuum.
566-611
Mathur, Samir D.
98c39875-9fd5-43b4-81ab-01f324c4e60f
Turton, David
6ce84b30-3cc0-42aa-ace5-f298d4260e9b
1 July 2014
Mathur, Samir D.
98c39875-9fd5-43b4-81ab-01f324c4e60f
Turton, David
6ce84b30-3cc0-42aa-ace5-f298d4260e9b
Abstract
A lot of confusion surrounds the issue of black hole complementarity, because the question has been considered without discussing the mechanism which guarantees unitarity. Considering such a mechanism leads to the following: (1) The Hawking quanta with energy E of order the black hole temperature T carry information, and so only appropriate processes involving E>>T quanta can have any possible complementary description with an information-free horizon; (2) The stretched horizon describes all possible black hole states with a given mass M, and it must expand out to a distance s_{bubble} before it can accept additional infalling bits; (3) The Hawking radiation has a specific low temperature T, and infalling quanta interact significantly with it only within a distance s_{alpha} of the horizon. One finds s_{alpha} << s_{bubble} for E>>T, and this removes the argument against complementarity recently made by Almheiri et al. In particular, the condition E>>T leads to the notion of 'fuzzball complementarity', where the modes around the horizon are indeed correctly entangled in the complementary picture to give the vacuum.
Text
1306.5488v3
- Accepted Manuscript
More information
Accepted/In Press date: 14 May 2014
Published date: 1 July 2014
Identifiers
Local EPrints ID: 469762
URI: http://eprints.soton.ac.uk/id/eprint/469762
ISSN: 0550-3213
PURE UUID: d5725419-89e0-4c29-a24c-d8b7c761d24f
Catalogue record
Date deposited: 23 Sep 2022 17:29
Last modified: 17 Mar 2024 03:48
Export record
Altmetrics
Contributors
Author:
Samir D. Mathur
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics