The University of Southampton
University of Southampton Institutional Repository

SNIa cosmology analysis Results from simulated LSST images: from difference imaging to constraints on dark energy

SNIa cosmology analysis Results from simulated LSST images: from difference imaging to constraints on dark energy
SNIa cosmology analysis Results from simulated LSST images: from difference imaging to constraints on dark energy

The Vera Rubin Observatory Legacy Survey of Space and Time (LSST) is expected to process ∼10 6 transient detections per night. For precision measurements of cosmological parameters and rates, it is critical to understand the detection efficiency, magnitude limits, artifact contamination levels, and biases in the selection and photometry. Here we rigorously test the LSST Difference Image Analysis (DIA) pipeline using simulated images from the Rubin Observatory LSST Dark Energy Science Collaboration Data Challenge (DC2) simulation for the Wide-Fast-Deep survey area. DC2 is the first large-scale (300 deg 2) image simulation of a transient survey that includes realistic cadence, variable observing conditions, and CCD image artifacts. We analyze ∼15 deg 2 of DC2 over a 5 yr time span in which artificial point sources from Type Ia supernova (SNIa) light curves have been overlaid onto the images. The magnitude limits per filter are u = 23.66 mag, g = 24.69 mag, r = 24.06 mag, i = 23.45 mag, z = 22.54 mag, and y = 21.62 mag. The artifact contamination levels are ∼90% of all detections, corresponding to ∼1000 artifacts deg -2 in g band, and falling to 300 deg -2 in y band. The photometry has biases <1% for magnitudes 19.5 < m < 23. Our DIA performance on simulated images is similar to that of the Dark Energy Survey difference-imaging pipeline on real images. We also characterize DC2 image properties to produce catalog-level simulations needed for distance bias corrections. We find good agreement between DC2 data and simulations for distributions of signal-to-noise ratio, redshift, and fitted light-curve properties. Applying a realistic SNIa cosmology analysis for redshifts z < 1, we recover the input cosmology parameters to within statistical uncertainties.

0004-637X
Sánchez, B. O.
858fbde5-d854-41c3-abea-123b177582f4
Kessler, R.
73a1d852-9d13-408f-94c1-2bd3241d47e5
Scolnic, D.
dcdbe5db-52ef-4d69-93d1-3f337046dcfa
Armstrong, R.
19121ba8-51b6-4a7b-bb53-79f33fbef665
Biswas, R.
a86b4570-9f4c-4dfa-b43b-59ecb6502084
Bogart, J.
a58a00e1-bfd3-46d4-baf5-b29dced1a7f5
Chiang, J.
e4edcf16-3a9d-4dc7-86ae-45241a001be5
Cohen-Tanugi, J.
2e5f0c7c-be8c-473d-b1ff-66b7ffc33627
Fouchez, D.
5a3768f3-bab5-464d-b9db-c56503510325
Gris, Ph.
f69bf255-bbbc-42d0-9dfd-004be3bdb68c
Heitmann, K.
2ef3c529-65ed-4797-a34a-6aa9694e17d3
Hložek, R.
b43696fb-25f3-4351-9c3a-b701f995a800
Jha, S.
363f79e1-3288-4ff1-9f69-334520a4bc64
Kelly, H.
1490638e-6fde-4c65-a480-f72034a570c5
Liu, S.
3554b4ea-f13f-4ea0-af48-e7559d076cb5
Narayan, G.
ea179d6b-a858-4cc1-89c0-85815c1b2d04
Racine, B.
23df6514-fbc6-4daf-9c5b-6b8b195eebd3
Rykoff, E.
a2928264-452e-4a43-b394-685d61464592
Sullivan, M.
2f31f9fa-8e79-4b35-98e2-0cb38f503850
Walter, C. W.
35443348-9791-4299-b9dd-6ae81b4c5242
Wood-Vasey, W. M.
846adbd8-0421-4b56-b87a-6d65fca82e1a
LSST Dark Energy Science Collaboration (DESC),
f4a6278b-23e9-4c72-91f2-8a7fe1dacbf8
Sánchez, B. O.
858fbde5-d854-41c3-abea-123b177582f4
Kessler, R.
73a1d852-9d13-408f-94c1-2bd3241d47e5
Scolnic, D.
dcdbe5db-52ef-4d69-93d1-3f337046dcfa
Armstrong, R.
19121ba8-51b6-4a7b-bb53-79f33fbef665
Biswas, R.
a86b4570-9f4c-4dfa-b43b-59ecb6502084
Bogart, J.
a58a00e1-bfd3-46d4-baf5-b29dced1a7f5
Chiang, J.
e4edcf16-3a9d-4dc7-86ae-45241a001be5
Cohen-Tanugi, J.
2e5f0c7c-be8c-473d-b1ff-66b7ffc33627
Fouchez, D.
5a3768f3-bab5-464d-b9db-c56503510325
Gris, Ph.
f69bf255-bbbc-42d0-9dfd-004be3bdb68c
Heitmann, K.
2ef3c529-65ed-4797-a34a-6aa9694e17d3
Hložek, R.
b43696fb-25f3-4351-9c3a-b701f995a800
Jha, S.
363f79e1-3288-4ff1-9f69-334520a4bc64
Kelly, H.
1490638e-6fde-4c65-a480-f72034a570c5
Liu, S.
3554b4ea-f13f-4ea0-af48-e7559d076cb5
Narayan, G.
ea179d6b-a858-4cc1-89c0-85815c1b2d04
Racine, B.
23df6514-fbc6-4daf-9c5b-6b8b195eebd3
Rykoff, E.
a2928264-452e-4a43-b394-685d61464592
Sullivan, M.
2f31f9fa-8e79-4b35-98e2-0cb38f503850
Walter, C. W.
35443348-9791-4299-b9dd-6ae81b4c5242
Wood-Vasey, W. M.
846adbd8-0421-4b56-b87a-6d65fca82e1a
LSST Dark Energy Science Collaboration (DESC),
f4a6278b-23e9-4c72-91f2-8a7fe1dacbf8

Sánchez, B. O., Kessler, R., Scolnic, D., Armstrong, R., Biswas, R., Bogart, J., Chiang, J., Cohen-Tanugi, J., Fouchez, D., Gris, Ph., Heitmann, K., Hložek, R., Jha, S., Kelly, H., Liu, S., Narayan, G., Racine, B., Rykoff, E., Sullivan, M., Walter, C. W., Wood-Vasey, W. M. and LSST Dark Energy Science Collaboration (DESC), (2022) SNIa cosmology analysis Results from simulated LSST images: from difference imaging to constraints on dark energy. The Astrophysical Journal, 934 (2), [96]. (doi:10.3847/1538-4357/ac7a37).

Record type: Article

Abstract

The Vera Rubin Observatory Legacy Survey of Space and Time (LSST) is expected to process ∼10 6 transient detections per night. For precision measurements of cosmological parameters and rates, it is critical to understand the detection efficiency, magnitude limits, artifact contamination levels, and biases in the selection and photometry. Here we rigorously test the LSST Difference Image Analysis (DIA) pipeline using simulated images from the Rubin Observatory LSST Dark Energy Science Collaboration Data Challenge (DC2) simulation for the Wide-Fast-Deep survey area. DC2 is the first large-scale (300 deg 2) image simulation of a transient survey that includes realistic cadence, variable observing conditions, and CCD image artifacts. We analyze ∼15 deg 2 of DC2 over a 5 yr time span in which artificial point sources from Type Ia supernova (SNIa) light curves have been overlaid onto the images. The magnitude limits per filter are u = 23.66 mag, g = 24.69 mag, r = 24.06 mag, i = 23.45 mag, z = 22.54 mag, and y = 21.62 mag. The artifact contamination levels are ∼90% of all detections, corresponding to ∼1000 artifacts deg -2 in g band, and falling to 300 deg -2 in y band. The photometry has biases <1% for magnitudes 19.5 < m < 23. Our DIA performance on simulated images is similar to that of the Dark Energy Survey difference-imaging pipeline on real images. We also characterize DC2 image properties to produce catalog-level simulations needed for distance bias corrections. We find good agreement between DC2 data and simulations for distributions of signal-to-noise ratio, redshift, and fitted light-curve properties. Applying a realistic SNIa cosmology analysis for redshifts z < 1, we recover the input cosmology parameters to within statistical uncertainties.

Other
pdf - Accepted Manuscript
Available under License Creative Commons Attribution.
Download (10MB)
Text
Sánchez_2022_ApJ_934_96 - Version of Record
Available under License Creative Commons Attribution.
Download (2MB)

More information

Accepted/In Press date: 16 June 2022
e-pub ahead of print date: 28 July 2022
Published date: 1 August 2022

Identifiers

Local EPrints ID: 471767
URI: http://eprints.soton.ac.uk/id/eprint/471767
ISSN: 0004-637X
PURE UUID: 7ce14931-06f4-44f8-9c2e-46dc1a612322
ORCID for M. Sullivan: ORCID iD orcid.org/0000-0001-9053-4820

Catalogue record

Date deposited: 17 Nov 2022 17:51
Last modified: 17 Mar 2024 03:30

Export record

Altmetrics

Contributors

Author: B. O. Sánchez
Author: R. Kessler
Author: D. Scolnic
Author: R. Armstrong
Author: R. Biswas
Author: J. Bogart
Author: J. Chiang
Author: J. Cohen-Tanugi
Author: D. Fouchez
Author: Ph. Gris
Author: K. Heitmann
Author: R. Hložek
Author: S. Jha
Author: H. Kelly
Author: S. Liu
Author: G. Narayan
Author: B. Racine
Author: E. Rykoff
Author: M. Sullivan ORCID iD
Author: C. W. Walter
Author: W. M. Wood-Vasey
Author: LSST Dark Energy Science Collaboration (DESC)

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×