Alvarez Borges, Fernando J., King, Oliver N.F., Madhusudhan, Bangalore M., Connolley, Thomas, Basham, Mark and Ahmed, Sharif (2023) Comparison of methods to segment variable-contrast XCT images of methane-bearing sand using U-nets trained on single dataset sub-volumes. Methane, 2 (1). (doi:10.3390/methane2010001).
Abstract
Methane (CH4) hydrate dissociation and CH4 release are potential geohazards currently investigated using X-ray computed tomography (XCT). Image segmentation is an important data processing step for this type of research. However, it is often time consuming, computing resource-intensive, operator-dependent, and tailored for each XCT dataset due to differences in greyscale contrast. In this paper, an investigation is carried out using U-Nets, a class of Convolutional Neural Network, to segment synchrotron XCT images of CH4-bearing sand during hydrate formation, and extract porosity and CH4 gas saturation. Three U-Net deployments previously untried for this task are assessed: (1) a bespoke 3D hierarchical method, (2) a 2D multi-label, multi-axis method and (3) RootPainter, a 2D U-Net application with interactive corrections. U-Nets are trained using small, targeted hand-annotated datasets to reduce operator time. It was found that the segmentation accuracy of all three methods surpass mainstream watershed and thresholding techniques. Accuracy slightly reduces in low-contrast data, which affects volume fraction measurements, but errors are small compared with gravimetric methods. Moreover, U-Net models trained on low-contrast images can be used to segment higher-contrast datasets, without further training. This demonstrates model portability, which can expedite the segmentation of large datasets over short timespans.
More information
Identifiers
Catalogue record
Export record
Altmetrics
Contributors
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.