The University of Southampton
University of Southampton Institutional Repository

Link prediction with attention applied on multiple knowledge graph embedding models

Link prediction with attention applied on multiple knowledge graph embedding models
Link prediction with attention applied on multiple knowledge graph embedding models
Gregucci, Cosimo
d0dfa9ed-ddb4-4380-9d8f-e9a362e99db7
Nayyeri, Mojtaba
476e5009-e6fc-45e6-ac7f-c07fe0898632
Hernandez, Daniel
39723173-ccff-4015-b506-cec5aec76936
Staab, Steffen
bf48d51b-bd11-4d58-8e1c-4e6e03b30c49
Gregucci, Cosimo
d0dfa9ed-ddb4-4380-9d8f-e9a362e99db7
Nayyeri, Mojtaba
476e5009-e6fc-45e6-ac7f-c07fe0898632
Hernandez, Daniel
39723173-ccff-4015-b506-cec5aec76936
Staab, Steffen
bf48d51b-bd11-4d58-8e1c-4e6e03b30c49

Gregucci, Cosimo, Nayyeri, Mojtaba, Hernandez, Daniel and Staab, Steffen (2022) Link prediction with attention applied on multiple knowledge graph embedding models. ACM Web Conference 2023, , Austin, United States. 30 Apr - 04 May 2023. 11 pp . (In Press)

Record type: Conference or Workshop Item (Paper)
Text
Link_Prediction_Geometric_Query_Attention
Download (1MB)

More information

Accepted/In Press date: 4 February 2022
Venue - Dates: ACM Web Conference 2023, , Austin, United States, 2023-04-30 - 2023-05-04

Identifiers

Local EPrints ID: 475536
URI: http://eprints.soton.ac.uk/id/eprint/475536
PURE UUID: 89d88f24-faa6-43e7-9de5-e05ca433d76d
ORCID for Steffen Staab: ORCID iD orcid.org/0000-0002-0780-4154

Catalogue record

Date deposited: 21 Mar 2023 17:41
Last modified: 17 Mar 2024 03:38

Export record

Contributors

Author: Cosimo Gregucci
Author: Mojtaba Nayyeri
Author: Daniel Hernandez
Author: Steffen Staab ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×