The University of Southampton
University of Southampton Institutional Repository

The dark energy survey supernova program: cosmological biases from supernova photometric classification

The dark energy survey supernova program: cosmological biases from supernova photometric classification
The dark energy survey supernova program: cosmological biases from supernova photometric classification
Cosmological analyses of samples of photometrically identified type Ia supernovae (SNe Ia) depend on understanding the effects of 'contamination' from core-collapse and peculiar SN Ia events. We employ a rigorous analysis using the photometric classifier SuperNNova on state-of-the-art simulations of SN samples to determine cosmological biases due to such 'non-Ia' contamination in the Dark Energy Survey (DES) 5-yr SN sample. Depending on the non-Ia SN models used in the SuperNNova training and testing samples, contamination ranges from 0.8 to 3.5 per cent, with a classification efficiency of 97.7-99.5 per cent. Using the Bayesian Estimation Applied to Multiple Species (BEAMS) framework and its extension BBC ('BEAMS with Bias Correction'), we produce a redshift-binned Hubble diagram marginalized over contamination and corrected for selection effects, and use it to constrain the dark energy equation-of-state, w. Assuming a flat universe with Gaussian ΩM prior of 0.311 ± 0.010, we show that biases on w are <0.008 when using SuperNNova, with systematic uncertainties associated with contamination around 10 per cent of the statistical uncertainty on w for the DES-SN sample. An alternative approach of discarding contaminants using outlier rejection techniques (e.g. Chauvenet's criterion) in place of SuperNNova leads to biases on w that are larger but still modest (0.015-0.03). Finally, we measure biases due to contamination on w0 and wa (assuming a flat universe), and find these to be <0.009 in w0 and <0.108 in wa, 5 to 10 times smaller than the statistical uncertainties for the DES-SN sample.
cosmology: observations, supernovae: general, surveys
1365-2966
1106-1127
Vincenzi, M.
54c7cfcb-25b1-4fcd-b8f3-7a50a2ec821e
Sullivan, M.
2f31f9fa-8e79-4b35-98e2-0cb38f503850
Möller, A.
64e6f7fe-41ac-498b-9f69-c88a0f7981c4
Armstrong, P.
3a76ed23-d82e-439a-a1ff-ee299ed953de
Brout, D.
2e6c15c6-38ee-4593-b3b6-3c3f406b4fb1
Carollo, D.
a1aaebdc-b44f-4397-9a39-8e1ce3ba0fa5
Bassett, B. A.
0c1b480e-2e10-4df9-8700-3ceaff98a2d5
Carr, A.
bb43ca00-1244-49c3-a3b9-1a63c0f6c7fa
Davis, T. M.
466dfec4-c506-41fb-8b23-ea6c3c97e15b
Frohmaier, C.
e752dabb-bbdc-430d-ac86-861ea58d0e1b
Galbany, L.
76c0f594-2419-43d1-8c38-6429ecad4a03
Glazebrook, K.
a0f7c538-1e8c-4ea8-9f49-a5ab0eb353f4
Graur, O.
b342cb7b-f64c-4d0d-926e-d07cd0a5ba72
Kelsey, L.
732749d5-2108-4632-aad6-b362458178d9
Kessler, R.
73a1d852-9d13-408f-94c1-2bd3241d47e5
Kovacs, E.
3142e0ee-068e-4c1f-89d8-afcf870d1059
Lewis, G. F.
2b7a4131-74df-41cc-93aa-b15b04290f92
Lidman, C.
70c80609-d55e-4ca6-b057-aed4a00b4b89
Malik, U.
3d312e9d-584e-4988-8cfd-5ed236ce697a
Nichol, R. C.
0c9a8540-1f97-4fd7-bc77-e18db450e632
Popovic, B.
649333ff-0775-48a1-b292-4d9830f67ae9
Sako, M.
c55b2dbb-04bd-4759-8c37-4d640f09c286
Scolnic, D.
dcdbe5db-52ef-4d69-93d1-3f337046dcfa
Smith, M.
249373f1-07dd-4b66-9ebd-16c520b78492
Taylor, G.
d2cf7814-0bfb-422e-b710-057b4614190c
Tucker, B. E.
7dc5b046-5bd6-4392-9984-eb1485496e4e
Wiseman, P.
865f95f8-2200-46a8-bd5e-3ee30bb44072
Aguena, M.
5a2ce5af-bd27-4b44-a1c0-d4ea339a59b2
Allam, S.
ddcc4444-2731-4ed7-b2f0-10dc1b54fa8c
Annis, J.
b21af104-dcad-472a-8424-b49d41d41c06
Asorey, J.
c8481389-854f-41ed-9fa5-adcb64ed8be7
Bacon, D.
3087c37a-6ed3-4b72-9523-7f757fd27043
Bertin, E.
6f2de635-03bc-4e21-99ae-00db71b944f7
Brooks, D.
a3c528d9-fb8a-406c-bc92-56eff4985bcf
Burke, D. L.
0d20fba0-9285-4cb4-b076-312166fc7ad7
Carnero Rosell, A.
d66191ef-a014-4029-bfe8-e9b3c653e3be
Carretero, J.
081b0f5d-7e69-469c-a22d-5b851f9b8d1d
Castander, F. J.
b61356c2-f7f5-4da7-9322-b9eda0b0081a
Costanzi, M.
400140cc-a71b-498f-890d-b08209fc5b17
da Costa, L. N.
b1ed9fd9-b99a-4012-8112-79cba46d8a23
Pereira, M. E. S.
31543982-a9f3-4226-be05-4a7583b27a1b
De Vicente, J.
f1d6022a-1d82-4b26-b421-4627aa5a5568
Desai, S.
9fb3d948-7af8-43e1-8c9c-a11b6cc376ce
Diehl, H. T.
cf996f45-85cd-43df-b621-3032f9527150
Doel, P.
00d69910-6075-4a52-9c7b-57e947a3b171
Everett, S.
7d8a68d2-6ef6-4710-9268-f6733a2e3b0b
Ferrero, I.
39cc50d6-f2ae-4faa-a2b5-21da164fe6e1
Flaugher, B.
cca72cda-37e5-4d1b-a792-c11946615fb5
Fosalba, P.
7309d371-b57b-4fb5-99f2-1dd419e46285
Frieman, J.
6c34b206-537c-429c-9aeb-5df1d1e5e656
et al.
Vincenzi, M.
54c7cfcb-25b1-4fcd-b8f3-7a50a2ec821e
Sullivan, M.
2f31f9fa-8e79-4b35-98e2-0cb38f503850
Möller, A.
64e6f7fe-41ac-498b-9f69-c88a0f7981c4
Armstrong, P.
3a76ed23-d82e-439a-a1ff-ee299ed953de
Brout, D.
2e6c15c6-38ee-4593-b3b6-3c3f406b4fb1
Carollo, D.
a1aaebdc-b44f-4397-9a39-8e1ce3ba0fa5
Bassett, B. A.
0c1b480e-2e10-4df9-8700-3ceaff98a2d5
Carr, A.
bb43ca00-1244-49c3-a3b9-1a63c0f6c7fa
Davis, T. M.
466dfec4-c506-41fb-8b23-ea6c3c97e15b
Frohmaier, C.
e752dabb-bbdc-430d-ac86-861ea58d0e1b
Galbany, L.
76c0f594-2419-43d1-8c38-6429ecad4a03
Glazebrook, K.
a0f7c538-1e8c-4ea8-9f49-a5ab0eb353f4
Graur, O.
b342cb7b-f64c-4d0d-926e-d07cd0a5ba72
Kelsey, L.
732749d5-2108-4632-aad6-b362458178d9
Kessler, R.
73a1d852-9d13-408f-94c1-2bd3241d47e5
Kovacs, E.
3142e0ee-068e-4c1f-89d8-afcf870d1059
Lewis, G. F.
2b7a4131-74df-41cc-93aa-b15b04290f92
Lidman, C.
70c80609-d55e-4ca6-b057-aed4a00b4b89
Malik, U.
3d312e9d-584e-4988-8cfd-5ed236ce697a
Nichol, R. C.
0c9a8540-1f97-4fd7-bc77-e18db450e632
Popovic, B.
649333ff-0775-48a1-b292-4d9830f67ae9
Sako, M.
c55b2dbb-04bd-4759-8c37-4d640f09c286
Scolnic, D.
dcdbe5db-52ef-4d69-93d1-3f337046dcfa
Smith, M.
249373f1-07dd-4b66-9ebd-16c520b78492
Taylor, G.
d2cf7814-0bfb-422e-b710-057b4614190c
Tucker, B. E.
7dc5b046-5bd6-4392-9984-eb1485496e4e
Wiseman, P.
865f95f8-2200-46a8-bd5e-3ee30bb44072
Aguena, M.
5a2ce5af-bd27-4b44-a1c0-d4ea339a59b2
Allam, S.
ddcc4444-2731-4ed7-b2f0-10dc1b54fa8c
Annis, J.
b21af104-dcad-472a-8424-b49d41d41c06
Asorey, J.
c8481389-854f-41ed-9fa5-adcb64ed8be7
Bacon, D.
3087c37a-6ed3-4b72-9523-7f757fd27043
Bertin, E.
6f2de635-03bc-4e21-99ae-00db71b944f7
Brooks, D.
a3c528d9-fb8a-406c-bc92-56eff4985bcf
Burke, D. L.
0d20fba0-9285-4cb4-b076-312166fc7ad7
Carnero Rosell, A.
d66191ef-a014-4029-bfe8-e9b3c653e3be
Carretero, J.
081b0f5d-7e69-469c-a22d-5b851f9b8d1d
Castander, F. J.
b61356c2-f7f5-4da7-9322-b9eda0b0081a
Costanzi, M.
400140cc-a71b-498f-890d-b08209fc5b17
da Costa, L. N.
b1ed9fd9-b99a-4012-8112-79cba46d8a23
Pereira, M. E. S.
31543982-a9f3-4226-be05-4a7583b27a1b
De Vicente, J.
f1d6022a-1d82-4b26-b421-4627aa5a5568
Desai, S.
9fb3d948-7af8-43e1-8c9c-a11b6cc376ce
Diehl, H. T.
cf996f45-85cd-43df-b621-3032f9527150
Doel, P.
00d69910-6075-4a52-9c7b-57e947a3b171
Everett, S.
7d8a68d2-6ef6-4710-9268-f6733a2e3b0b
Ferrero, I.
39cc50d6-f2ae-4faa-a2b5-21da164fe6e1
Flaugher, B.
cca72cda-37e5-4d1b-a792-c11946615fb5
Fosalba, P.
7309d371-b57b-4fb5-99f2-1dd419e46285
Frieman, J.
6c34b206-537c-429c-9aeb-5df1d1e5e656

Vincenzi, M., Sullivan, M., Möller, A. and Smith, M. , et al. (2023) The dark energy survey supernova program: cosmological biases from supernova photometric classification. Monthly Notices Of The Royal Astronomical Society, 518 (1), 1106-1127. (doi:10.1093/mnras/stac1404).

Record type: Article

Abstract

Cosmological analyses of samples of photometrically identified type Ia supernovae (SNe Ia) depend on understanding the effects of 'contamination' from core-collapse and peculiar SN Ia events. We employ a rigorous analysis using the photometric classifier SuperNNova on state-of-the-art simulations of SN samples to determine cosmological biases due to such 'non-Ia' contamination in the Dark Energy Survey (DES) 5-yr SN sample. Depending on the non-Ia SN models used in the SuperNNova training and testing samples, contamination ranges from 0.8 to 3.5 per cent, with a classification efficiency of 97.7-99.5 per cent. Using the Bayesian Estimation Applied to Multiple Species (BEAMS) framework and its extension BBC ('BEAMS with Bias Correction'), we produce a redshift-binned Hubble diagram marginalized over contamination and corrected for selection effects, and use it to constrain the dark energy equation-of-state, w. Assuming a flat universe with Gaussian ΩM prior of 0.311 ± 0.010, we show that biases on w are <0.008 when using SuperNNova, with systematic uncertainties associated with contamination around 10 per cent of the statistical uncertainty on w for the DES-SN sample. An alternative approach of discarding contaminants using outlier rejection techniques (e.g. Chauvenet's criterion) in place of SuperNNova leads to biases on w that are larger but still modest (0.015-0.03). Finally, we measure biases due to contamination on w0 and wa (assuming a flat universe), and find these to be <0.009 in w0 and <0.108 in wa, 5 to 10 times smaller than the statistical uncertainties for the DES-SN sample.

Other
The Dark Energy Survey Supernova Program.pdf - Accepted Manuscript
Available under License Creative Commons Attribution.
Download (1MB)

More information

Accepted/In Press date: 22 April 2022
e-pub ahead of print date: 3 June 2022
Published date: 1 January 2023
Additional Information: Funding: This work was supported by the Science and Technology Facilities Council (grant number ST/P006760/1) through the DISCnet Centre for Doctoral Training. MS acknowledges support from EU/FP7-ERC grant 615929, and PW acknowledges support from STFC grant ST/R000506/1. TMD acknowledges support from ARC grant FL180100168. LG acknowledges financial support from the Spanish Ministry of Science, Innovation and Universities (MICIU) under the 2019 Ramón y Cajal program RYC2019-027683 and from the Spanish MICIU project PID2020-115253GA-I00. RH and MS were supported by DOE grant DE-FOA-0001781 and NASA grant NNH15ZDA001N-WFIRST. The material is based upon work supported by NASA under award number 80GSFC17M0002. LK thanks the UKRI Future Leaders Fellowship for support through the grant MR/T01881X/1.
Keywords: cosmology: observations, supernovae: general, surveys

Identifiers

Local EPrints ID: 477466
URI: http://eprints.soton.ac.uk/id/eprint/477466
ISSN: 1365-2966
PURE UUID: 3c6f0583-1414-4f96-a111-479f23b1c84c
ORCID for M. Sullivan: ORCID iD orcid.org/0000-0001-9053-4820
ORCID for C. Frohmaier: ORCID iD orcid.org/0000-0001-9553-4723
ORCID for P. Wiseman: ORCID iD orcid.org/0000-0002-3073-1512

Catalogue record

Date deposited: 06 Jun 2023 17:11
Last modified: 12 Nov 2024 03:06

Export record

Altmetrics

Contributors

Author: M. Vincenzi
Author: M. Sullivan ORCID iD
Author: A. Möller
Author: P. Armstrong
Author: D. Brout
Author: D. Carollo
Author: B. A. Bassett
Author: A. Carr
Author: T. M. Davis
Author: C. Frohmaier ORCID iD
Author: L. Galbany
Author: K. Glazebrook
Author: O. Graur
Author: L. Kelsey
Author: R. Kessler
Author: E. Kovacs
Author: G. F. Lewis
Author: C. Lidman
Author: U. Malik
Author: R. C. Nichol
Author: B. Popovic
Author: M. Sako
Author: D. Scolnic
Author: M. Smith
Author: G. Taylor
Author: B. E. Tucker
Author: P. Wiseman ORCID iD
Author: M. Aguena
Author: S. Allam
Author: J. Annis
Author: J. Asorey
Author: D. Bacon
Author: E. Bertin
Author: D. Brooks
Author: D. L. Burke
Author: A. Carnero Rosell
Author: J. Carretero
Author: F. J. Castander
Author: M. Costanzi
Author: L. N. da Costa
Author: M. E. S. Pereira
Author: J. De Vicente
Author: S. Desai
Author: H. T. Diehl
Author: P. Doel
Author: S. Everett
Author: I. Ferrero
Author: B. Flaugher
Author: P. Fosalba
Author: J. Frieman
Corporate Author: et al.

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×