The University of Southampton
University of Southampton Institutional Repository

Machine learning driven latency optimization for internet of things applications in edge computing

Machine learning driven latency optimization for internet of things applications in edge computing
Machine learning driven latency optimization for internet of things applications in edge computing
Emerging Internet of Things (IoT) applications require faster execution time and response time to achieve optimal performance. However, most IoT devices have limited or no computing capability to achieve such stringent application requirements. To this end, computation offloading in edge computing has been used for IoT systems to achieve the desired performance. Nevertheless, randomly offloading applications to any available edge without considering their resource demands, inter-application dependencies and edge resource availability may eventually result in execution delay and performance degradation. We introduce Edge-IoT, a machine learning-enabled orchestration framework in this paper, which utilizes the states of edge resources and application resource requirements to facilitate a resource-aware offloading scheme for minimizing the average latency. We further propose a variant bin-packing optimization model that co-locates applications firmly on edge resources to fully utilize available resources. Extensive experiments show the effectiveness and resource efficiency of the proposed approach.
1673-5188
40-52
Awada, Uchechukwu
ef034620-7288-4b31-88f6-134dde39c7c9
Zhang, Jiankang
c6c025b3-6576-4f9d-be95-57908e61fa88
Chen, Sheng
9310a111-f79a-48b8-98c7-383ca93cbb80
Li, Shuangzhi
ef205f54-53f2-4d49-b1c7-96c565ed9c85
Yang, Shouyi
033667e8-18ab-4f7f-8118-a1c1eab214f9
Awada, Uchechukwu
ef034620-7288-4b31-88f6-134dde39c7c9
Zhang, Jiankang
c6c025b3-6576-4f9d-be95-57908e61fa88
Chen, Sheng
9310a111-f79a-48b8-98c7-383ca93cbb80
Li, Shuangzhi
ef205f54-53f2-4d49-b1c7-96c565ed9c85
Yang, Shouyi
033667e8-18ab-4f7f-8118-a1c1eab214f9

Awada, Uchechukwu, Zhang, Jiankang, Chen, Sheng, Li, Shuangzhi and Yang, Shouyi (2023) Machine learning driven latency optimization for internet of things applications in edge computing. ZTE Communications, 21 (2), 40-52.

Record type: Article

Abstract

Emerging Internet of Things (IoT) applications require faster execution time and response time to achieve optimal performance. However, most IoT devices have limited or no computing capability to achieve such stringent application requirements. To this end, computation offloading in edge computing has been used for IoT systems to achieve the desired performance. Nevertheless, randomly offloading applications to any available edge without considering their resource demands, inter-application dependencies and edge resource availability may eventually result in execution delay and performance degradation. We introduce Edge-IoT, a machine learning-enabled orchestration framework in this paper, which utilizes the states of edge resources and application resource requirements to facilitate a resource-aware offloading scheme for minimizing the average latency. We further propose a variant bin-packing optimization model that co-locates applications firmly on edge resources to fully utilize available resources. Extensive experiments show the effectiveness and resource efficiency of the proposed approach.

Text
ZTE-Communications - Accepted Manuscript
Download (3MB)
Text
ZTEC2023-June - Version of Record
Restricted to Repository staff only
Request a copy

More information

Accepted/In Press date: 28 April 2023
Published date: 28 June 2023

Identifiers

Local EPrints ID: 477906
URI: http://eprints.soton.ac.uk/id/eprint/477906
ISSN: 1673-5188
PURE UUID: f24bc50d-dc82-42ad-b2c6-d2d83b90643b

Catalogue record

Date deposited: 16 Jun 2023 16:34
Last modified: 17 Mar 2024 07:45

Export record

Contributors

Author: Uchechukwu Awada
Author: Jiankang Zhang
Author: Sheng Chen
Author: Shuangzhi Li
Author: Shouyi Yang

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×