Ultimate precision: Gaussian parameter estimation in flat and curved spacetime
Ultimate precision: Gaussian parameter estimation in flat and curved spacetime
Relativistic quantum metrology provides an optimal strategy for the
estimation of parameters encoded in quantum fields in flat and curved
spacetime. These parameters usually correspond to physical quantities of
interest such as proper times, accelerations, gravitational field
strengths, among other spacetime parameters. The precise estimation of
these parameters can lead to novel applications in gravimeters,
spacetime probes and gravitational wave detectors. Previous work in this
direction only considered pure probe states. In realistic situations,
however, probe states are mixed. In this paper, we provide a framework
for the computation of optimal precision bounds for mixed single- and
two-mode Gaussian states within quantum field theory. This enables the
estimation of spacetime parameters in case the field states are
initially at finite temperature.
Quantum Physics
Šafránek, Dominik
8372b54c-3665-42eb-b751-821519e7dfd2
Kohlrus, Jan
2ada319b-0cfa-4792-8c8d-294cffd645ac
Bruschi, David Edward
6b839b6e-2a84-428a-bb60-0a76397228df
Lee, Antony R.
653a0d5b-ba7c-41c9-871b-76d2048974e8
Fuentes, Ivette
6281afeb-b1bc-44fc-824c-265b57be9794
1 November 2015
Šafránek, Dominik
8372b54c-3665-42eb-b751-821519e7dfd2
Kohlrus, Jan
2ada319b-0cfa-4792-8c8d-294cffd645ac
Bruschi, David Edward
6b839b6e-2a84-428a-bb60-0a76397228df
Lee, Antony R.
653a0d5b-ba7c-41c9-871b-76d2048974e8
Fuentes, Ivette
6281afeb-b1bc-44fc-824c-265b57be9794
Šafránek, Dominik, Kohlrus, Jan, Bruschi, David Edward, Lee, Antony R. and Fuentes, Ivette
(2015)
Ultimate precision: Gaussian parameter estimation in flat and curved spacetime.
arXiv.
(doi:10.48550/arXiv.1511.03905).
Abstract
Relativistic quantum metrology provides an optimal strategy for the
estimation of parameters encoded in quantum fields in flat and curved
spacetime. These parameters usually correspond to physical quantities of
interest such as proper times, accelerations, gravitational field
strengths, among other spacetime parameters. The precise estimation of
these parameters can lead to novel applications in gravimeters,
spacetime probes and gravitational wave detectors. Previous work in this
direction only considered pure probe states. In realistic situations,
however, probe states are mixed. In this paper, we provide a framework
for the computation of optimal precision bounds for mixed single- and
two-mode Gaussian states within quantum field theory. This enables the
estimation of spacetime parameters in case the field states are
initially at finite temperature.
Other
http://arxiv.org/licenses/nonexclusive-distrib/1.0/pdf
- Author's Original
Available under License Other.
More information
Published date: 1 November 2015
Keywords:
Quantum Physics
Identifiers
Local EPrints ID: 480324
URI: http://eprints.soton.ac.uk/id/eprint/480324
ISSN: 2331-8422
PURE UUID: 0ff999e7-fe39-4b27-81ac-8666f79410ac
Catalogue record
Date deposited: 01 Aug 2023 17:21
Last modified: 17 Mar 2024 03:54
Export record
Altmetrics
Contributors
Author:
Dominik Šafránek
Author:
Jan Kohlrus
Author:
David Edward Bruschi
Author:
Antony R. Lee
Author:
Ivette Fuentes
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics