The University of Southampton
University of Southampton Institutional Repository

Multidisciplinary ecosystem to study lifecourse determinants and prevention of early-onset burdensome multimorbidity (MELD-B) – protocol for a research collaboration

Multidisciplinary ecosystem to study lifecourse determinants and prevention of early-onset burdensome multimorbidity (MELD-B) – protocol for a research collaboration
Multidisciplinary ecosystem to study lifecourse determinants and prevention of early-onset burdensome multimorbidity (MELD-B) – protocol for a research collaboration
Background: most people living with multiple long-term condition multimorbidity (MLTC-M) are under 65 (defined as ‘early onset’). Earlier and greater accrual of long-term conditions (LTCs) may be influenced by the timing and nature of exposure to key risk factors, wider determinants or other LTCs at different life stages. We have established a research collaboration titled ‘MELD-B’ to understand how wider determinants, sentinel conditions (the first LTC in the lifecourse) and LTC accrual sequence affect risk of early-onset, burdensome MLTC-M, and to inform prevention interventions.

Aim: our aim is to identify critical periods in the lifecourse for prevention of early-onset, burdensome MLTC-M, identified through the analysis of birth cohorts and electronic health records, including artificial intelligence (AI)-enhanced analyses.

Design: we will develop deeper understanding of ‘burdensomeness’ and ‘complexity’ through a qualitative evidence synthesis and a consensus study. Using safe data environments for analyses across large, representative routine healthcare datasets and birth cohorts, we will apply AI methods to identify early-onset, burdensome MLTC-M clusters and sentinel conditions, develop semi-supervised learning to match individuals across datasets, identify determinants of burdensome clusters, and model trajectories of LTC and burden accrual. We will characterise early-life (under 18 years) risk factors for early-onset, burdensome MLTC-M and sentinel conditions. Finally, using AI and causal inference modelling, we will model potential ‘preventable moments’, defined as time periods in the life course where there is an opportunity for intervention on risk factors and early determinants to prevent the development of MLTC-M. Patient and public involvement is integrated throughout.
2633-5565
26335565231204544
Fraser, Simon D.S.
135884b6-8737-4e8a-a98c-5d803ac7a2dc
Stannard, Sebastian
0fbf5a1c-abab-4135-a8f9-c3c9f570aaea
Holland, Emilia
0a16c883-d72d-44bb-b780-0d30b8e06aab
Boniface, Michael
f30bfd7d-20ed-451b-b405-34e3e22fdfba
Hoyle, Rebecca B.
e980d6a8-b750-491b-be13-84d695f8b8a1
Wilkinson, Rebecca
f901ac47-e2b1-4f6e-9199-974a38e1af29
Akbari, Ashley
80b0f5bb-6f36-491d-9725-8fee367e03ff
Ashworth, Mark
51302b16-d1e8-4221-a192-04aebdd16f77
Berrington, Ann
bd0fc093-310d-4236-8126-ca0c7eb9ddde
Chiovoloni, Roberta
593d5cf9-f7c7-4ef9-a459-e627b63b3606
Enright, Jessica
594ebd8c-0423-4c7c-a53d-dd563cac48ca
Francis, Nick A.
9b610883-605c-4fee-871d-defaa86ccf8e
Giles, Gareth
6dc40a9c-0ca5-4efd-a18c-03b8c223dab3
Gulliford, Martin
f6866310-c305-464b-92e2-e69bed8d55ef
McDonald, Sara
11bc4e67-135e-440c-a62d-c6cca8ac5928
Mair, Francis S.
dcb02f04-1900-4d8f-910b-fb63a3e89936
Owen, Rhiannon K.
8fe8622b-d31b-4fe6-b079-31074c410669
Paranjothy, Shantini
04acae3d-1dba-48ee-80e4-6f4b85cb8043
Parsons, Heather J.
7c6c47ad-8c2d-49ff-b39b-359d146966ab
Sanchez-Garcia, Ruben J.
8246cea2-ae1c-44f2-94e9-bacc9371c3ed
Shiranirad, Mozhdeh
d25e36f5-e99d-4aec-b1c2-ca17e6d7a490
Zlatev, Zlatko
8f2e3635-d76c-46e2-85b9-53cc223fee01
Alwan, Nisreen
0d37b320-f325-4ed3-ba51-0fe2866d5382
Fraser, Simon D.S.
135884b6-8737-4e8a-a98c-5d803ac7a2dc
Stannard, Sebastian
0fbf5a1c-abab-4135-a8f9-c3c9f570aaea
Holland, Emilia
0a16c883-d72d-44bb-b780-0d30b8e06aab
Boniface, Michael
f30bfd7d-20ed-451b-b405-34e3e22fdfba
Hoyle, Rebecca B.
e980d6a8-b750-491b-be13-84d695f8b8a1
Wilkinson, Rebecca
f901ac47-e2b1-4f6e-9199-974a38e1af29
Akbari, Ashley
80b0f5bb-6f36-491d-9725-8fee367e03ff
Ashworth, Mark
51302b16-d1e8-4221-a192-04aebdd16f77
Berrington, Ann
bd0fc093-310d-4236-8126-ca0c7eb9ddde
Chiovoloni, Roberta
593d5cf9-f7c7-4ef9-a459-e627b63b3606
Enright, Jessica
594ebd8c-0423-4c7c-a53d-dd563cac48ca
Francis, Nick A.
9b610883-605c-4fee-871d-defaa86ccf8e
Giles, Gareth
6dc40a9c-0ca5-4efd-a18c-03b8c223dab3
Gulliford, Martin
f6866310-c305-464b-92e2-e69bed8d55ef
McDonald, Sara
11bc4e67-135e-440c-a62d-c6cca8ac5928
Mair, Francis S.
dcb02f04-1900-4d8f-910b-fb63a3e89936
Owen, Rhiannon K.
8fe8622b-d31b-4fe6-b079-31074c410669
Paranjothy, Shantini
04acae3d-1dba-48ee-80e4-6f4b85cb8043
Parsons, Heather J.
7c6c47ad-8c2d-49ff-b39b-359d146966ab
Sanchez-Garcia, Ruben J.
8246cea2-ae1c-44f2-94e9-bacc9371c3ed
Shiranirad, Mozhdeh
d25e36f5-e99d-4aec-b1c2-ca17e6d7a490
Zlatev, Zlatko
8f2e3635-d76c-46e2-85b9-53cc223fee01
Alwan, Nisreen
0d37b320-f325-4ed3-ba51-0fe2866d5382

Fraser, Simon D.S., Stannard, Sebastian, Holland, Emilia, Boniface, Michael, Hoyle, Rebecca B., Wilkinson, Rebecca, Akbari, Ashley, Ashworth, Mark, Berrington, Ann, Chiovoloni, Roberta, Enright, Jessica, Francis, Nick A., Giles, Gareth, Gulliford, Martin, McDonald, Sara, Mair, Francis S., Owen, Rhiannon K., Paranjothy, Shantini, Parsons, Heather J., Sanchez-Garcia, Ruben J., Shiranirad, Mozhdeh, Zlatev, Zlatko and Alwan, Nisreen (2023) Multidisciplinary ecosystem to study lifecourse determinants and prevention of early-onset burdensome multimorbidity (MELD-B) – protocol for a research collaboration. Journal of Multimorbidity and Comorbidity, 13, 26335565231204544. (doi:10.1177/26335565231204544).

Record type: Article

Abstract

Background: most people living with multiple long-term condition multimorbidity (MLTC-M) are under 65 (defined as ‘early onset’). Earlier and greater accrual of long-term conditions (LTCs) may be influenced by the timing and nature of exposure to key risk factors, wider determinants or other LTCs at different life stages. We have established a research collaboration titled ‘MELD-B’ to understand how wider determinants, sentinel conditions (the first LTC in the lifecourse) and LTC accrual sequence affect risk of early-onset, burdensome MLTC-M, and to inform prevention interventions.

Aim: our aim is to identify critical periods in the lifecourse for prevention of early-onset, burdensome MLTC-M, identified through the analysis of birth cohorts and electronic health records, including artificial intelligence (AI)-enhanced analyses.

Design: we will develop deeper understanding of ‘burdensomeness’ and ‘complexity’ through a qualitative evidence synthesis and a consensus study. Using safe data environments for analyses across large, representative routine healthcare datasets and birth cohorts, we will apply AI methods to identify early-onset, burdensome MLTC-M clusters and sentinel conditions, develop semi-supervised learning to match individuals across datasets, identify determinants of burdensome clusters, and model trajectories of LTC and burden accrual. We will characterise early-life (under 18 years) risk factors for early-onset, burdensome MLTC-M and sentinel conditions. Finally, using AI and causal inference modelling, we will model potential ‘preventable moments’, defined as time periods in the life course where there is an opportunity for intervention on risk factors and early determinants to prevent the development of MLTC-M. Patient and public involvement is integrated throughout.

Text
MELD_B_Protocol_paper_revision_clean (1) - Accepted Manuscript
Available under License Creative Commons Attribution.
Download (93kB)
Text
fraser-et-al-2023-multidisciplinary-ecosystem-to-study-lifecourse-determinants-and-prevention-of-early-onset-burdensome - Version of Record
Available under License Creative Commons Attribution.
Download (1MB)
Image
Figure 1
Download (204kB)
Image
Figure 2
Download (115kB)

More information

Accepted/In Press date: 13 September 2023
e-pub ahead of print date: 25 September 2023
Published date: 25 September 2023
Additional Information: © The Author(s) 2023.

Identifiers

Local EPrints ID: 482081
URI: http://eprints.soton.ac.uk/id/eprint/482081
ISSN: 2633-5565
PURE UUID: f9d5e22d-736e-4201-a665-59f2980c03d0
ORCID for Simon D.S. Fraser: ORCID iD orcid.org/0000-0002-4172-4406
ORCID for Sebastian Stannard: ORCID iD orcid.org/0000-0002-6139-1020
ORCID for Emilia Holland: ORCID iD orcid.org/0000-0001-5722-3836
ORCID for Michael Boniface: ORCID iD orcid.org/0000-0002-9281-6095
ORCID for Rebecca B. Hoyle: ORCID iD orcid.org/0000-0002-1645-1071
ORCID for Ann Berrington: ORCID iD orcid.org/0000-0002-1683-6668
ORCID for Nick A. Francis: ORCID iD orcid.org/0000-0001-8939-7312
ORCID for Ruben J. Sanchez-Garcia: ORCID iD orcid.org/0000-0001-6479-3028
ORCID for Mozhdeh Shiranirad: ORCID iD orcid.org/0000-0003-4346-3059
ORCID for Nisreen Alwan: ORCID iD orcid.org/0000-0002-4134-8463

Catalogue record

Date deposited: 19 Sep 2023 16:31
Last modified: 11 Jun 2024 02:05

Export record

Altmetrics

Contributors

Author: Sebastian Stannard ORCID iD
Author: Emilia Holland ORCID iD
Author: Rebecca Wilkinson
Author: Ashley Akbari
Author: Mark Ashworth
Author: Ann Berrington ORCID iD
Author: Roberta Chiovoloni
Author: Jessica Enright
Author: Nick A. Francis ORCID iD
Author: Gareth Giles
Author: Martin Gulliford
Author: Sara McDonald
Author: Francis S. Mair
Author: Rhiannon K. Owen
Author: Shantini Paranjothy
Author: Heather J. Parsons
Author: Mozhdeh Shiranirad ORCID iD
Author: Zlatko Zlatev
Author: Nisreen Alwan ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×