An off-lattice discrete model to characterise filamentous yeast colony morphology
An off-lattice discrete model to characterise filamentous yeast colony morphology
We combine an off-lattice agent-based mathematical model and experimentation to explore filamentous growth of a yeast colony. Under environmental stress, Saccharomyces cerevisiae yeast cells can transition from a bipolar (sated) to unipolar (pseudohyphal) budding mechanism, where cells elongate and bud end-to-end. This budding asymmetry yields spatially non-uniform growth, where filaments extend away from the colony centre, foraging for food. We use approximate Bayesian computation to quantify how individual cell budding mechanisms give rise to spatial patterns observed in experiments. We apply this method of parameter inference to experimental images of colonies of two strains of S. cerevisiae, in low and high nutrient environments. The colony size at the transition from sated to pseudohyphal growth, and a forking mechanism for pseudohyphal cell proliferation are the key features driving colony morphology. Simulations run with the most likely inferred parameters produce colony morphologies that closely resemble experimental results.
Li, Kai
f6a9f82f-dcfa-4c2f-b9fc-486a58755c19
Green, J. Edward F.
79f22dac-8b72-45d9-8e6a-1b9c93ea8afd
Tronnolone, Hayden
c17ba912-b652-49de-a1cc-7c120ee9a19c
Tam, Alexander K.Y.
4037506d-a50e-4a08-8a92-d2022a387932
Black, Andrew J.
f141d87a-ca48-41d4-bd9f-d9bd21e5a2c1
Gardner, Jennifer M.
0d95188b-206d-4817-8437-e163351f6e7f
Sundstrom, Joanna F.
6c6b3452-dfb3-4b5c-aa42-c721eed7b9bb
Jiranek, Vladimir
8e5a8dfd-f5b2-43e3-928b-11dff324abc7
Binder, Benjamin J.
4b861311-8ad2-417c-903a-1d35e541d14b
21 November 2024
Li, Kai
f6a9f82f-dcfa-4c2f-b9fc-486a58755c19
Green, J. Edward F.
79f22dac-8b72-45d9-8e6a-1b9c93ea8afd
Tronnolone, Hayden
c17ba912-b652-49de-a1cc-7c120ee9a19c
Tam, Alexander K.Y.
4037506d-a50e-4a08-8a92-d2022a387932
Black, Andrew J.
f141d87a-ca48-41d4-bd9f-d9bd21e5a2c1
Gardner, Jennifer M.
0d95188b-206d-4817-8437-e163351f6e7f
Sundstrom, Joanna F.
6c6b3452-dfb3-4b5c-aa42-c721eed7b9bb
Jiranek, Vladimir
8e5a8dfd-f5b2-43e3-928b-11dff324abc7
Binder, Benjamin J.
4b861311-8ad2-417c-903a-1d35e541d14b
Li, Kai, Green, J. Edward F., Tronnolone, Hayden, Tam, Alexander K.Y., Black, Andrew J., Gardner, Jennifer M., Sundstrom, Joanna F., Jiranek, Vladimir and Binder, Benjamin J.
(2024)
An off-lattice discrete model to characterise filamentous yeast colony morphology.
PLoS Computational Biology, 20 (11), [e1012605].
(doi:10.1371/journal.pcbi.1012605).
Abstract
We combine an off-lattice agent-based mathematical model and experimentation to explore filamentous growth of a yeast colony. Under environmental stress, Saccharomyces cerevisiae yeast cells can transition from a bipolar (sated) to unipolar (pseudohyphal) budding mechanism, where cells elongate and bud end-to-end. This budding asymmetry yields spatially non-uniform growth, where filaments extend away from the colony centre, foraging for food. We use approximate Bayesian computation to quantify how individual cell budding mechanisms give rise to spatial patterns observed in experiments. We apply this method of parameter inference to experimental images of colonies of two strains of S. cerevisiae, in low and high nutrient environments. The colony size at the transition from sated to pseudohyphal growth, and a forking mechanism for pseudohyphal cell proliferation are the key features driving colony morphology. Simulations run with the most likely inferred parameters produce colony morphologies that closely resemble experimental results.
Text
journal.pcbi.1012605
- Version of Record
More information
Accepted/In Press date: 3 November 2024
Published date: 21 November 2024
Identifiers
Local EPrints ID: 497007
URI: http://eprints.soton.ac.uk/id/eprint/497007
ISSN: 1553-734X
PURE UUID: d0d86833-0abc-4bd3-bf79-919a8f9d0309
Catalogue record
Date deposited: 09 Jan 2025 18:03
Last modified: 22 Aug 2025 02:39
Export record
Altmetrics
Contributors
Author:
Kai Li
Author:
J. Edward F. Green
Author:
Hayden Tronnolone
Author:
Alexander K.Y. Tam
Author:
Andrew J. Black
Author:
Jennifer M. Gardner
Author:
Joanna F. Sundstrom
Author:
Vladimir Jiranek
Author:
Benjamin J. Binder
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics