The University of Southampton
University of Southampton Institutional Repository

Selection function of clusters in Dark Energy Survey year 3 data from cross-matching with South Pole Telescope detections

Selection function of clusters in Dark Energy Survey year 3 data from cross-matching with South Pole Telescope detections
Selection function of clusters in Dark Energy Survey year 3 data from cross-matching with South Pole Telescope detections

Context: galaxy clusters selected based on overdensities of galaxies in photometric surveys provide the largest cluster samples. However, modeling the selection function of such samples is complicated by noncluster members projected along the line of sight (projection effects) and the potential detection of unvirialized objects (contamination). 

Aims: we empirically constrained the magnitude of these effects by cross-matching galaxy clusters selected in the Dark Energy Survey data with the redMaPPer algorithm with significant detections in three South Pole Telescope surveys (SZ, pol-ECS, pol-500d). 

Methods: for matched clusters, we augmented the redMaPPer catalog with the SPT detection significance. For unmatched objects we used the SPT detection threshold as an upper limit on the SZe signature. Using a Bayesian population model applied to the collected multiwavelength data, we explored various physically motivated models to describe the relationship between observed richness and halo mass. 

Results: our analysis reveals a clear preference for models with an additional skewed scatter component associated with projection effects over a purely log-normal scatter model. We rule out significant contamination by unvirialized objects at the high-richness end of the sample. While dedicated simulations offer a well-fitting calibration of projection effects, our findings suggest the presence of redshift-dependent trends that these simulations may not have captured. Our findings highlight that modeling the selection function of optically detected clusters remains a complicated challenge that requires a combination of simulation and data-driven approaches.

astro-ph.CO, Galaxies: clusters: general, Methods: statistical, Large-scale structure of Universe
0004-6361
Grandis, S.
d6bad66d-2e23-4865-97c4-557c2ccc3a0a
Costanzi, M.
400140cc-a71b-498f-890d-b08209fc5b17
Mohr, J.J.
48ae5d2c-c6fb-4092-9f70-41c80f698523
Bleem, L.E.
7a132706-7602-468a-85d1-dd81085cc5bf
Wu, H.-Y.
bbd00c67-d10f-4e0c-955f-6159c296e92b
Aguena, M.
6daefcdb-754d-4227-992a-63b7762152d9
Allam, S.
ddcc4444-2731-4ed7-b2f0-10dc1b54fa8c
Andrade-Oliveira, F.
25b364be-412c-42ed-a79c-687ca1c0178a
Bocquet, S.
9a92aae0-8c01-44d0-a071-3d242d5c6dde
Brooks, D.
2e16d268-e493-4d8d-b2c0-a6df5d647470
Rosell, A. Carnero
d16324d8-7cb1-45a5-9270-dc11bdcda93d
Carretero, J.
0efcd492-b5a1-4e9e-819a-099cdc845a2c
da Costa, L.N.
86f87ccd-7b00-4c91-b33c-c72d77eefb2d
Pereira, M.E.S.
31543982-a9f3-4226-be05-4a7583b27a1b
Davis, T.M.
466dfec4-c506-41fb-8b23-ea6c3c97e15b
Desai, S.
9fb3d948-7af8-43e1-8c9c-a11b6cc376ce
Diehl, H.T.
e9d80b5a-51f2-447a-a8eb-0e90cb3ed8ce
Doel, P.
8c8cab48-0d93-463a-9756-dea30c7ff846
Everett, S.
95a9ccab-7114-455c-a999-215daedd6972
Flaugher, B.
cca72cda-37e5-4d1b-a792-c11946615fb5
Frieman, J.
6c34b206-537c-429c-9aeb-5df1d1e5e656
García-Bellido, J.
0d901d62-f268-4982-a08b-880c578ab3d8
Gaztanaga, E.
3a3f63dd-9666-448c-9ec6-10e53fc0dc1a
Gruen, D.
2117fe8b-f1bc-4e4b-a20c-91d3b2c90ba3
Gruendl, R.A.
87c14c5f-8d13-498e-910b-31897e5891e6
Gutierrez, G.
78403287-6c1e-4238-9238-06c3a714f5cd
Hinton, S.R.
9e2f00d6-7026-4491-a28e-17d5880f65d1
Hlacacek-Larrondo, J.
7065e3c6-2e58-4558-8315-b3835cd9ac7f
Hollowood, D.L.
0148abc6-4e30-4746-8b32-c7fe1ba285f7
Honscheid, K.
7785c520-ac7d-44d5-a832-2fc953d852f1
James, D.J.
9e2b9630-2935-4a1b-918c-0c7b0a58e2c4
Klein, M.
c09d2d33-c311-42db-a1ad-91b1b6d21a6b
Marshall, J.L.
749c552d-ec24-4360-8dd0-1ceb9474453e
Mena-Fernández, J.
77cf9e0c-d2b5-4188-a030-1de79f45f3af
Miquel, R.
67ecc6b2-1050-4bee-80aa-9a90b0837922
Palmese, A.
bd6c5c90-8038-44c7-97ad-a45cad754e9f
Malagón, A.A. Plazas
0d2d1d4b-8cbe-4611-af41-f0b6efdb7df2
Reichardt, C.L.
af076e02-7bba-4960-b90d-b62cd71d11cc
Romer, A.K.
9c4485a8-3114-4470-9576-5aa367cd2d8d
Samuroff, S.
cd3b52f8-712d-492e-97b4-357a719b8d0f
Cid, D. Sanchez
b4a023c9-0992-48b0-9d5d-4f4948053033
Sanchez, E.
563806c1-6323-407b-bdfc-d2c357670593
Santiago, B.
3489b784-bb07-405f-b798-cf83788b50c0
Saro, A.
f3249858-e9c7-4aa9-9689-43d62299d833
Sevilla-Noarbe, I.
0188bcf9-e1df-4b8f-84ba-643b716e1b8d
Smith, M.
3385b39a-2463-47b0-9e73-0938e03e280e
Soares-Santos, M.
0a0a5188-44fe-44c4-98c6-f462dee6dd8b
Sommer, M.W.
301e5ee8-7f00-479e-9b8e-a8f909b34573
Suchyta, E.
632e180b-6712-4435-b31e-7706c0ed1b05
Wiseman, P.
865f95f8-2200-46a8-bd5e-3ee30bb44072
et al.
Grandis, S.
d6bad66d-2e23-4865-97c4-557c2ccc3a0a
Costanzi, M.
400140cc-a71b-498f-890d-b08209fc5b17
Mohr, J.J.
48ae5d2c-c6fb-4092-9f70-41c80f698523
Bleem, L.E.
7a132706-7602-468a-85d1-dd81085cc5bf
Wu, H.-Y.
bbd00c67-d10f-4e0c-955f-6159c296e92b
Aguena, M.
6daefcdb-754d-4227-992a-63b7762152d9
Allam, S.
ddcc4444-2731-4ed7-b2f0-10dc1b54fa8c
Andrade-Oliveira, F.
25b364be-412c-42ed-a79c-687ca1c0178a
Bocquet, S.
9a92aae0-8c01-44d0-a071-3d242d5c6dde
Brooks, D.
2e16d268-e493-4d8d-b2c0-a6df5d647470
Rosell, A. Carnero
d16324d8-7cb1-45a5-9270-dc11bdcda93d
Carretero, J.
0efcd492-b5a1-4e9e-819a-099cdc845a2c
da Costa, L.N.
86f87ccd-7b00-4c91-b33c-c72d77eefb2d
Pereira, M.E.S.
31543982-a9f3-4226-be05-4a7583b27a1b
Davis, T.M.
466dfec4-c506-41fb-8b23-ea6c3c97e15b
Desai, S.
9fb3d948-7af8-43e1-8c9c-a11b6cc376ce
Diehl, H.T.
e9d80b5a-51f2-447a-a8eb-0e90cb3ed8ce
Doel, P.
8c8cab48-0d93-463a-9756-dea30c7ff846
Everett, S.
95a9ccab-7114-455c-a999-215daedd6972
Flaugher, B.
cca72cda-37e5-4d1b-a792-c11946615fb5
Frieman, J.
6c34b206-537c-429c-9aeb-5df1d1e5e656
García-Bellido, J.
0d901d62-f268-4982-a08b-880c578ab3d8
Gaztanaga, E.
3a3f63dd-9666-448c-9ec6-10e53fc0dc1a
Gruen, D.
2117fe8b-f1bc-4e4b-a20c-91d3b2c90ba3
Gruendl, R.A.
87c14c5f-8d13-498e-910b-31897e5891e6
Gutierrez, G.
78403287-6c1e-4238-9238-06c3a714f5cd
Hinton, S.R.
9e2f00d6-7026-4491-a28e-17d5880f65d1
Hlacacek-Larrondo, J.
7065e3c6-2e58-4558-8315-b3835cd9ac7f
Hollowood, D.L.
0148abc6-4e30-4746-8b32-c7fe1ba285f7
Honscheid, K.
7785c520-ac7d-44d5-a832-2fc953d852f1
James, D.J.
9e2b9630-2935-4a1b-918c-0c7b0a58e2c4
Klein, M.
c09d2d33-c311-42db-a1ad-91b1b6d21a6b
Marshall, J.L.
749c552d-ec24-4360-8dd0-1ceb9474453e
Mena-Fernández, J.
77cf9e0c-d2b5-4188-a030-1de79f45f3af
Miquel, R.
67ecc6b2-1050-4bee-80aa-9a90b0837922
Palmese, A.
bd6c5c90-8038-44c7-97ad-a45cad754e9f
Malagón, A.A. Plazas
0d2d1d4b-8cbe-4611-af41-f0b6efdb7df2
Reichardt, C.L.
af076e02-7bba-4960-b90d-b62cd71d11cc
Romer, A.K.
9c4485a8-3114-4470-9576-5aa367cd2d8d
Samuroff, S.
cd3b52f8-712d-492e-97b4-357a719b8d0f
Cid, D. Sanchez
b4a023c9-0992-48b0-9d5d-4f4948053033
Sanchez, E.
563806c1-6323-407b-bdfc-d2c357670593
Santiago, B.
3489b784-bb07-405f-b798-cf83788b50c0
Saro, A.
f3249858-e9c7-4aa9-9689-43d62299d833
Sevilla-Noarbe, I.
0188bcf9-e1df-4b8f-84ba-643b716e1b8d
Smith, M.
3385b39a-2463-47b0-9e73-0938e03e280e
Soares-Santos, M.
0a0a5188-44fe-44c4-98c6-f462dee6dd8b
Sommer, M.W.
301e5ee8-7f00-479e-9b8e-a8f909b34573
Suchyta, E.
632e180b-6712-4435-b31e-7706c0ed1b05
Wiseman, P.
865f95f8-2200-46a8-bd5e-3ee30bb44072

Grandis, S., Costanzi, M. and Mohr, J.J. , et al. (2025) Selection function of clusters in Dark Energy Survey year 3 data from cross-matching with South Pole Telescope detections. A&A, 700, [A15]. (doi:10.1051/0004-6361/202554177).

Record type: Article

Abstract

Context: galaxy clusters selected based on overdensities of galaxies in photometric surveys provide the largest cluster samples. However, modeling the selection function of such samples is complicated by noncluster members projected along the line of sight (projection effects) and the potential detection of unvirialized objects (contamination). 

Aims: we empirically constrained the magnitude of these effects by cross-matching galaxy clusters selected in the Dark Energy Survey data with the redMaPPer algorithm with significant detections in three South Pole Telescope surveys (SZ, pol-ECS, pol-500d). 

Methods: for matched clusters, we augmented the redMaPPer catalog with the SPT detection significance. For unmatched objects we used the SPT detection threshold as an upper limit on the SZe signature. Using a Bayesian population model applied to the collected multiwavelength data, we explored various physically motivated models to describe the relationship between observed richness and halo mass. 

Results: our analysis reveals a clear preference for models with an additional skewed scatter component associated with projection effects over a purely log-normal scatter model. We rule out significant contamination by unvirialized objects at the high-richness end of the sample. While dedicated simulations offer a well-fitting calibration of projection effects, our findings suggest the presence of redshift-dependent trends that these simulations may not have captured. Our findings highlight that modeling the selection function of optically detected clusters remains a complicated challenge that requires a combination of simulation and data-driven approaches.

Text
2502.12914v1 - Author's Original
Available under License Creative Commons Attribution.
Download (778kB)
Text
aa54177-25 - Version of Record
Available under License Creative Commons Attribution.
Download (809kB)

More information

Accepted/In Press date: 3 June 2025
e-pub ahead of print date: 25 July 2025
Published date: 1 August 2025
Keywords: astro-ph.CO, Galaxies: clusters: general, Methods: statistical, Large-scale structure of Universe

Identifiers

Local EPrints ID: 505056
URI: http://eprints.soton.ac.uk/id/eprint/505056
ISSN: 0004-6361
PURE UUID: 9bb23fcb-6a7a-4ded-b959-6ce4165e5e3a
ORCID for P. Wiseman: ORCID iD orcid.org/0000-0002-3073-1512

Catalogue record

Date deposited: 25 Sep 2025 16:47
Last modified: 26 Sep 2025 01:58

Export record

Altmetrics

Contributors

Author: S. Grandis
Author: M. Costanzi
Author: J.J. Mohr
Author: L.E. Bleem
Author: H.-Y. Wu
Author: M. Aguena
Author: S. Allam
Author: F. Andrade-Oliveira
Author: S. Bocquet
Author: D. Brooks
Author: A. Carnero Rosell
Author: J. Carretero
Author: L.N. da Costa
Author: M.E.S. Pereira
Author: T.M. Davis
Author: S. Desai
Author: H.T. Diehl
Author: P. Doel
Author: S. Everett
Author: B. Flaugher
Author: J. Frieman
Author: J. García-Bellido
Author: E. Gaztanaga
Author: D. Gruen
Author: R.A. Gruendl
Author: G. Gutierrez
Author: S.R. Hinton
Author: J. Hlacacek-Larrondo
Author: D.L. Hollowood
Author: K. Honscheid
Author: D.J. James
Author: M. Klein
Author: J.L. Marshall
Author: J. Mena-Fernández
Author: R. Miquel
Author: A. Palmese
Author: A.A. Plazas Malagón
Author: C.L. Reichardt
Author: A.K. Romer
Author: S. Samuroff
Author: D. Sanchez Cid
Author: E. Sanchez
Author: B. Santiago
Author: A. Saro
Author: I. Sevilla-Noarbe
Author: M. Smith
Author: M. Soares-Santos
Author: M.W. Sommer
Author: E. Suchyta
Author: P. Wiseman ORCID iD
Corporate Author: et al.

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×