The University of Southampton
University of Southampton Institutional Repository

Processing of ultra-short optical pulses for high bit-rate optical communications

Processing of ultra-short optical pulses for high bit-rate optical communications
Processing of ultra-short optical pulses for high bit-rate optical communications
In this thesis, the possibility of integrating linear pulse shapers into various all-optical signal processing devices for applications in high speed optical communication systems, to enhance the overall system performance, is investigated. The linear pulse shaping is performed using superstructured fibre Bragg gratings, which seem very promising passive devices for such application due to their compactness, easy integrability and compatibility with fibre based devices. At the same time, optical switching is facilitated by nonlinear effects in state of the art highly nonlinear fibres.

The generation and manipulation of waveforms with specific shapes also requires suitable techniques for their precise characterization. For this reason, optical sampling oscilloscope or linear and nonlinear frequency resolved optical gating techniques are presented in this thesis.

As a first example of all optical signal processing using pre-shaped pulses, the incident noisy data pulses are expanded into rectangular pulses at the input port of a nonlinear optical switch (nonlinear optical loop mirror). The flat top of the shaped pulses allows for the mitigation of any mistiming of the original signal across a time window defined by their width, simply by switching them with shorter clean clock pulses. By using a nonlinear switch with full regenerative properties as well, it is demonstrated that amplitude noise reduction as well as timing jitter reduction can be achieved in a single nonlinear switch. In a different switch configuration, where cross-phase modulation is utilized in a single-pass configuration, retiming is obtained by preshaping clean control pulses into pulses with a parabolic shape. XPM induced by such pulses can provide linear frequency-shifting to shorter mistimed data pulses across a temporal window corresponding to the full width of the parabolic pulses. This frequency-shift is proportional to the relative pulse displacement from the control bit-slot centre. Propagation in a suitable length of a dispersive medium can then be used to correct for the mistiming. The parabolic pulse shape is also very interesting for nonlinear propagation in normal-dispersion fibres, since it can propagate at high peak powers without undergoing deleterious pulse distortion (avoiding wave-breaking effects). It is demonstrated that the nonlinearly broadened parabolic pulse spectrum is highly flat and coherent, with a high spectral density, as required for spectral slicing or pulse compression applications.

Finally, the use of Bismuth oxide highly nonlinear fibre is investigated in order to enhance the compactness and stability of the switching system. 2R-regeneration at 10- and 40-Gb/s is demonstrated using just 2 m of this fibre.
Parmigiani, Francesca
6a386833-5186-4448-875e-d691161aba62
Parmigiani, Francesca
6a386833-5186-4448-875e-d691161aba62
Richardson, David
ebfe1ff9-d0c2-4e52-b7ae-c1b13bccdef3

Parmigiani, Francesca (2006) Processing of ultra-short optical pulses for high bit-rate optical communications. University of Southampton, Optoelectronic Research Centre, Doctoral Thesis, 177pp.

Record type: Thesis (Doctoral)

Abstract

In this thesis, the possibility of integrating linear pulse shapers into various all-optical signal processing devices for applications in high speed optical communication systems, to enhance the overall system performance, is investigated. The linear pulse shaping is performed using superstructured fibre Bragg gratings, which seem very promising passive devices for such application due to their compactness, easy integrability and compatibility with fibre based devices. At the same time, optical switching is facilitated by nonlinear effects in state of the art highly nonlinear fibres.

The generation and manipulation of waveforms with specific shapes also requires suitable techniques for their precise characterization. For this reason, optical sampling oscilloscope or linear and nonlinear frequency resolved optical gating techniques are presented in this thesis.

As a first example of all optical signal processing using pre-shaped pulses, the incident noisy data pulses are expanded into rectangular pulses at the input port of a nonlinear optical switch (nonlinear optical loop mirror). The flat top of the shaped pulses allows for the mitigation of any mistiming of the original signal across a time window defined by their width, simply by switching them with shorter clean clock pulses. By using a nonlinear switch with full regenerative properties as well, it is demonstrated that amplitude noise reduction as well as timing jitter reduction can be achieved in a single nonlinear switch. In a different switch configuration, where cross-phase modulation is utilized in a single-pass configuration, retiming is obtained by preshaping clean control pulses into pulses with a parabolic shape. XPM induced by such pulses can provide linear frequency-shifting to shorter mistimed data pulses across a temporal window corresponding to the full width of the parabolic pulses. This frequency-shift is proportional to the relative pulse displacement from the control bit-slot centre. Propagation in a suitable length of a dispersive medium can then be used to correct for the mistiming. The parabolic pulse shape is also very interesting for nonlinear propagation in normal-dispersion fibres, since it can propagate at high peak powers without undergoing deleterious pulse distortion (avoiding wave-breaking effects). It is demonstrated that the nonlinearly broadened parabolic pulse spectrum is highly flat and coherent, with a high spectral density, as required for spectral slicing or pulse compression applications.

Finally, the use of Bismuth oxide highly nonlinear fibre is investigated in order to enhance the compactness and stability of the switching system. 2R-regeneration at 10- and 40-Gb/s is demonstrated using just 2 m of this fibre.

PDF
Parmigiani_2006_thesis_3678.pdf - Other
Download (5MB)

More information

Published date: December 2006
Organisations: University of Southampton

Identifiers

Local EPrints ID: 65525
URI: https://eprints.soton.ac.uk/id/eprint/65525
PURE UUID: 6425041c-6e78-4f9c-9cac-ea51963c590a
ORCID for Francesca Parmigiani: ORCID iD orcid.org/0000-0001-7784-2829
ORCID for David Richardson: ORCID iD orcid.org/0000-0002-7751-1058

Catalogue record

Date deposited: 27 Feb 2009
Last modified: 06 Mar 2019 01:37

Export record

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of https://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×