The University of Southampton
University of Southampton Institutional Repository

Semi-active damping control for vibration isolation of base disturbances

Semi-active damping control for vibration isolation of base disturbances
Semi-active damping control for vibration isolation of base disturbances
This thesis is concerned with semi-active damping control for vibration isolation of base disturbances. The aim is to investigate the effectiveness and suitability of semi-active damping control strategies for improving steady-state vibration isolation. A single-degree-of-freedom (SDOF) system, comprising a semi-active damper with a linear passive spring in parallel, is used to study the vibration isolation of base excitation. The semi-active control strategies investigated include on-off skyhook control, continuous skyhook control, on-off balance control and continuous balance control. Chatter and jerk problems are investigated, which can arise in numerical simulations and possibly in practice when using semi-active control strategies. Anti-chatter and anti-jerk control strategies are proposed. These control strategies are implemented numerically in Matlab/Simulink. Harmonic, periodic and random disturbances are considered in this thesis. The vibration isolation performance is evaluated in terms of Root-Mean-Square (RMS) acceleration transmissibility. The performance of these control strategies for the isolation of harmonic disturbances is firstly studied. The performance is compared with those of an adaptive-passive control strategy, a conventional and a skyhook passive damper. Results show that the semi-active control strategies can provide a better isolation than a conventional passive system with an equivalent damping level. The semi-active damper can provide isolation over the whole frequency range if the on-state damping of the semi-active damper is big enough. The fraction of time when the damper is turned on or off is found to be frequency dependent. The effects of secondary frequency, which is a harmonic or subharmonic of the fundamental frequency on switching time of the semi-active damper for isolation of the primary harmonic are examined. Upper bounds are derived for fraction of time when the switching time for the fundamental frequency may be affected by the presence of a secondary frequency. The performance of the semi-active isolation system for periodic and random disturbances, where there is more than one harmonic in the disturbance spectrum is investigated. The results for square wave and triangular wave disturbances suggest that semi-active control strategies are promising for periodic disturbance. Three special cases are considered for random disturbances when the acceleration, velocity and displacement inputs have flat spectra. The semi-active control strategies can provide some advantage in performance for random velocity and displacement disturbances with medium to high damping ratios. Only continuous skyhook control strategy can provide some benefit in isolation performance for random acceleration disturbances. Following on from the numerical simulations, experimental work is carried out to validate the simulation results. The experimental set-up incorporates an electromagnetic device as a semi-active damper. The on-off skyhook control algorithm is chosen to be implemented using an analogue circuit. The damping of the electromagnetic semi-active damper is achieved by opening and closing the magnet-coil circuit. Numerical predictions are confirmed by experimental observation. The performance of the electromagnetic damper is limited by the achievable damping level.
Liu, Yuyou
e9406ef3-07f1-4b84-a9a0-0ef33da3edbc
Liu, Yuyou
e9406ef3-07f1-4b84-a9a0-0ef33da3edbc
Waters, Tim
348d22f5-dba1-4384-87ac-04fe5d603c2f
Brennan, Mike
87c7bca3-a9e5-46aa-9153-34c712355a13

Liu, Yuyou (2004) Semi-active damping control for vibration isolation of base disturbances. University of Southampton, Institute of Sound and Vibration Research, Doctoral Thesis, 193pp.

Record type: Thesis (Doctoral)

Abstract

This thesis is concerned with semi-active damping control for vibration isolation of base disturbances. The aim is to investigate the effectiveness and suitability of semi-active damping control strategies for improving steady-state vibration isolation. A single-degree-of-freedom (SDOF) system, comprising a semi-active damper with a linear passive spring in parallel, is used to study the vibration isolation of base excitation. The semi-active control strategies investigated include on-off skyhook control, continuous skyhook control, on-off balance control and continuous balance control. Chatter and jerk problems are investigated, which can arise in numerical simulations and possibly in practice when using semi-active control strategies. Anti-chatter and anti-jerk control strategies are proposed. These control strategies are implemented numerically in Matlab/Simulink. Harmonic, periodic and random disturbances are considered in this thesis. The vibration isolation performance is evaluated in terms of Root-Mean-Square (RMS) acceleration transmissibility. The performance of these control strategies for the isolation of harmonic disturbances is firstly studied. The performance is compared with those of an adaptive-passive control strategy, a conventional and a skyhook passive damper. Results show that the semi-active control strategies can provide a better isolation than a conventional passive system with an equivalent damping level. The semi-active damper can provide isolation over the whole frequency range if the on-state damping of the semi-active damper is big enough. The fraction of time when the damper is turned on or off is found to be frequency dependent. The effects of secondary frequency, which is a harmonic or subharmonic of the fundamental frequency on switching time of the semi-active damper for isolation of the primary harmonic are examined. Upper bounds are derived for fraction of time when the switching time for the fundamental frequency may be affected by the presence of a secondary frequency. The performance of the semi-active isolation system for periodic and random disturbances, where there is more than one harmonic in the disturbance spectrum is investigated. The results for square wave and triangular wave disturbances suggest that semi-active control strategies are promising for periodic disturbance. Three special cases are considered for random disturbances when the acceleration, velocity and displacement inputs have flat spectra. The semi-active control strategies can provide some advantage in performance for random velocity and displacement disturbances with medium to high damping ratios. Only continuous skyhook control strategy can provide some benefit in isolation performance for random acceleration disturbances. Following on from the numerical simulations, experimental work is carried out to validate the simulation results. The experimental set-up incorporates an electromagnetic device as a semi-active damper. The on-off skyhook control algorithm is chosen to be implemented using an analogue circuit. The damping of the electromagnetic semi-active damper is achieved by opening and closing the magnet-coil circuit. Numerical predictions are confirmed by experimental observation. The performance of the electromagnetic damper is limited by the achievable damping level.

Text
Liu.pdf - Other
Download (2MB)

More information

Published date: December 2004
Organisations: University of Southampton

Identifiers

Local EPrints ID: 66164
URI: http://eprints.soton.ac.uk/id/eprint/66164
PURE UUID: f2260b44-3bb1-4513-9877-662970f329f8

Catalogue record

Date deposited: 07 May 2009
Last modified: 13 Mar 2024 18:10

Export record

Contributors

Author: Yuyou Liu
Thesis advisor: Tim Waters
Thesis advisor: Mike Brennan

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×