The University of Southampton
University of Southampton Institutional Repository

The study of surface SHG and polygonal microcavity design for nonlinear applications on LiNbO3

The study of surface SHG and polygonal microcavity design for nonlinear applications on LiNbO3
The study of surface SHG and polygonal microcavity design for nonlinear applications on LiNbO3
A z-cut congruent lithium niobate crystal (LiNbO3) has been used in this thesis, as a platform for the surface second harmonic generation (SHG) studies and for the designs of polygonal microcavities for nonlinear applications.

Reflection second harmonic generation (RSHG) experiments were performed on LiNbO3 to reveal the interfacial layer symmetry as the crystal is rotated around the z axis. RSHG was also used, unsuccessfully as a non-destructive tool to map the domain-inverted area in the poled LiNbO3 crystals. But nevertheless, the polarity of the direction of the y-axis of the crystal was determined from RSHG data and the data shows that this direction also inverts, during domain inversion. RSHG was used unsuccessfully to monitor the relaxation of the internal field within the domain inverted area of the poled LiNbO3.

A general operational principle of optical microcavities was discussed, in which a detailed theory governing the operational modes of a resonating hexagonal microcavity, made from bulk LiNbO3 crystal was reviewed for nonlinear device applications. A model for a total internal reflection (TIR) technique for the QPM method in a double-resonating hexagonal microcavity was formulated. The TIR-QPM model was based on finding a suitable hexagonal dimension in which, both the fundamental and SHG signal resonate simultaneously while at the same time allowing QPM to occur via TIR. The TIR-QPM model and the FDTD simulation were used to demonstrate the potential capability of the double-resonating hexagonal microcavity for efficient SHG. The model to achieve a nonlinear microcavity by periodically poling ring/disk resonator Ti:LiNbO3 ridge waveguide was introduced.

Sono, Tleyane J.
06258e0e-3de8-4480-a3ff-ca5cc218f0db
Sono, Tleyane J.
06258e0e-3de8-4480-a3ff-ca5cc218f0db

Sono, Tleyane J. (2009) The study of surface SHG and polygonal microcavity design for nonlinear applications on LiNbO3. University of Southampton, Optoelectronic Research Centre, Doctoral Thesis.

Record type: Thesis (Doctoral)

Abstract

A z-cut congruent lithium niobate crystal (LiNbO3) has been used in this thesis, as a platform for the surface second harmonic generation (SHG) studies and for the designs of polygonal microcavities for nonlinear applications.

Reflection second harmonic generation (RSHG) experiments were performed on LiNbO3 to reveal the interfacial layer symmetry as the crystal is rotated around the z axis. RSHG was also used, unsuccessfully as a non-destructive tool to map the domain-inverted area in the poled LiNbO3 crystals. But nevertheless, the polarity of the direction of the y-axis of the crystal was determined from RSHG data and the data shows that this direction also inverts, during domain inversion. RSHG was used unsuccessfully to monitor the relaxation of the internal field within the domain inverted area of the poled LiNbO3.

A general operational principle of optical microcavities was discussed, in which a detailed theory governing the operational modes of a resonating hexagonal microcavity, made from bulk LiNbO3 crystal was reviewed for nonlinear device applications. A model for a total internal reflection (TIR) technique for the QPM method in a double-resonating hexagonal microcavity was formulated. The TIR-QPM model was based on finding a suitable hexagonal dimension in which, both the fundamental and SHG signal resonate simultaneously while at the same time allowing QPM to occur via TIR. The TIR-QPM model and the FDTD simulation were used to demonstrate the potential capability of the double-resonating hexagonal microcavity for efficient SHG. The model to achieve a nonlinear microcavity by periodically poling ring/disk resonator Ti:LiNbO3 ridge waveguide was introduced.

Text
Sono_2009_thesis_4439.pdf - Other
Download (7MB)

More information

Published date: May 2009
Organisations: University of Southampton

Identifiers

Local EPrints ID: 70939
URI: http://eprints.soton.ac.uk/id/eprint/70939
PURE UUID: e6029a88-8425-4e1d-a482-d6e982482168

Catalogue record

Date deposited: 11 Dec 2009
Last modified: 13 Mar 2024 20:15

Export record

Contributors

Author: Tleyane J. Sono

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×