The University of Southampton
University of Southampton Institutional Repository

Dark Energy Survey deep field photometric redshift performance and training incompleteness assessment

Dark Energy Survey deep field photometric redshift performance and training incompleteness assessment
Dark Energy Survey deep field photometric redshift performance and training incompleteness assessment
Context: the determination of accurate photometric redshifts (photo-zs) in large imaging galaxy surveys is key for cosmological studies. One of the most common approaches are machine learning techniques. These methods require a spectroscopic or reference sample to train the algorithms. Attention has to be paid to the quality and properties of these samples since they are key factors in the estimation of reliable photo-zs.

Aims: the goal of this work is to calculate the photo-zs for the Y3 DES Deep Fields catalogue using the DNF machine learning algorithm. Moreover, we want to develop techniques to assess the incompleteness of the training sample and metrics to study how incompleteness affects the quality of photometric redshifts. Finally, we are interested in comparing the performance obtained with respect to the EAzY template fitting approach on Y3 DES Deep Fields catalogue.

Methods: we have emulated -- at brighter magnitude -- the training incompleteness with a spectroscopic sample whose redshifts are known to have a measurable view of the problem. We have used a principal component analysis to graphically assess incompleteness and to relate it with the performance parameters provided by DNF. Finally, we have applied the results about the incompleteness to the photo-z computation on Y3 DES Deep Fields with DNF and estimated its performance.

Results: the photo-zs of the galaxies in the DES deep fields were computed with the DNF algorithm and added to the Y3 DES Deep Fields catalogue. We have developed some techniques to evaluate the performance in the absence of “true” redshift and to assess the completeness. We have studied the tradeoff in the training sample between the highest spectroscopic redshift quality versus completeness. We found some advantages in relaxing the highest-quality spectroscopic redshift requirements at fainter magnitudes in favour of completeness. The results achieved by DNF on the Y3 Deep Fields are competitive with the ones provided by EAzY, showing notable stability at high redshifts. It should be noted that the good results obtained by DNF in the estimation of photo-zs in deep field catalogues make DNF suitable for the future Legacy Survey of Space and Time (LSST) and Euclid data, which will have similar depths to the Y3 DES Deep Fields.
astro-ph.CO, astro-ph.GA
0004-6361
Cipriano, L. Toribio San
3dfe8df5-9bca-4258-b97b-37f75b75dd92
Vicente, J. De
a4fe9b0b-7c7d-4594-89d3-083a55362c20
Sevilla-Noarbe, I.
a4690b61-feca-4933-887c-121a9f343470
Hartley, W.G.
f8388551-09ca-4c65-88ea-e0f5d9090d2d
Myles, J.
1cf9000b-a00c-4870-8e37-443a1a14acf1
Amon, A.
8723f229-3177-4dba-b464-937a5b5fbb42
Bernstein, G.M.
9d12d964-5827-488e-9de3-c4b0b517e8aa
Choi, A.
d021c699-3c3d-4ef9-9469-d069fcdbf25a
Eckert, K.
ca7c3da2-bf65-48a8-8ecd-d5ccdc90e694
Gruendl, R.A.
87c14c5f-8d13-498e-910b-31897e5891e6
Harrison, I.
ed96a3a6-ee2e-4c22-aefe-1281af699ca4
Sheldon, E.
34fc88df-f247-4b45-bf17-5b46f8abf5c5
Yanny, B.
84056e28-ba6b-4151-99ba-ee9cf635e9fc
Aguena, M.
5a2ce5af-bd27-4b44-a1c0-d4ea339a59b2
Allam, S.S.
ddcc4444-2731-4ed7-b2f0-10dc1b54fa8c
Alves, O.
e62402f5-f92e-45f0-b942-4d413ddf5523
Bacon, D.
3087c37a-6ed3-4b72-9523-7f757fd27043
Brooks, D.
a3c528d9-fb8a-406c-bc92-56eff4985bcf
Campos, A.
7be710fb-7388-4941-b219-0a361094f5b4
Rosell, A. Carnero
d16324d8-7cb1-45a5-9270-dc11bdcda93d
Carretero, J.
081b0f5d-7e69-469c-a22d-5b851f9b8d1d
Castander, F.J.
b61356c2-f7f5-4da7-9322-b9eda0b0081a
Conselice, C.
4dcee95e-7364-4463-a5c9-e09f560a8e97
Costa, L.N. da
6e08c6a9-4c6c-40d0-a616-7fe36ed30707
Pereira, M.E.S.
31543982-a9f3-4226-be05-4a7583b27a1b
Davis, T.M.
466dfec4-c506-41fb-8b23-ea6c3c97e15b
Desai, S.
9fb3d948-7af8-43e1-8c9c-a11b6cc376ce
Diehl, H.T.
e9d80b5a-51f2-447a-a8eb-0e90cb3ed8ce
Doel, P.
00d69910-6075-4a52-9c7b-57e947a3b171
Ferrero, I.
7a160745-4d2d-449f-8a7c-d131841aff3b
Frieman, J.
6c34b206-537c-429c-9aeb-5df1d1e5e656
García-Bellido, J.
0d901d62-f268-4982-a08b-880c578ab3d8
Gaztañaga, E.
3a3f63dd-9666-448c-9ec6-10e53fc0dc1a
Giannini, G.
1002ec01-69d4-469f-99ed-b35111553a6e
Hinton, S.R.
9e2f00d6-7026-4491-a28e-17d5880f65d1
Hollowood, D.L.
0148abc6-4e30-4746-8b32-c7fe1ba285f7
Honscheid, K.
c505a24c-7e4d-4761-a84d-5262868372ae
James, D.J.
80eaf04f-0443-4656-8bc9-e2f3fdace1d1
Kuehn, K.
c8275e43-4cd6-44f5-9cce-8475d0e5f7de
Lee, S.
b9b22495-ff29-4546-a18e-27690662256e
Lidman, C.
70c80609-d55e-4ca6-b057-aed4a00b4b89
Marshall, J.L.
a80432e4-3031-4224-b1cf-313bc1bda078
Mena-Fernández, J.
77cf9e0c-d2b5-4188-a030-1de79f45f3af
Menanteau, F.
d971ef80-9290-4fb1-87bf-d9b5e1e80821
Miquel, R.
acd92fc5-f50f-4ae0-afe8-01db537b6e36
Palmese, A.
f3884b7e-f72b-4f52-8eda-de972ee05872
Pieres, A.
2a583c4b-d1e7-45d3-8841-2a961f7ecad9
Malagón, A.A. Plazas
0d2d1d4b-8cbe-4611-af41-f0b6efdb7df2
Roodman, A.
e4b6b3b1-7c56-4112-b281-2f63b38e99d5
Wiseman, P.
865f95f8-2200-46a8-bd5e-3ee30bb44072
et al.
Cipriano, L. Toribio San
3dfe8df5-9bca-4258-b97b-37f75b75dd92
Vicente, J. De
a4fe9b0b-7c7d-4594-89d3-083a55362c20
Sevilla-Noarbe, I.
a4690b61-feca-4933-887c-121a9f343470
Hartley, W.G.
f8388551-09ca-4c65-88ea-e0f5d9090d2d
Myles, J.
1cf9000b-a00c-4870-8e37-443a1a14acf1
Amon, A.
8723f229-3177-4dba-b464-937a5b5fbb42
Bernstein, G.M.
9d12d964-5827-488e-9de3-c4b0b517e8aa
Choi, A.
d021c699-3c3d-4ef9-9469-d069fcdbf25a
Eckert, K.
ca7c3da2-bf65-48a8-8ecd-d5ccdc90e694
Gruendl, R.A.
87c14c5f-8d13-498e-910b-31897e5891e6
Harrison, I.
ed96a3a6-ee2e-4c22-aefe-1281af699ca4
Sheldon, E.
34fc88df-f247-4b45-bf17-5b46f8abf5c5
Yanny, B.
84056e28-ba6b-4151-99ba-ee9cf635e9fc
Aguena, M.
5a2ce5af-bd27-4b44-a1c0-d4ea339a59b2
Allam, S.S.
ddcc4444-2731-4ed7-b2f0-10dc1b54fa8c
Alves, O.
e62402f5-f92e-45f0-b942-4d413ddf5523
Bacon, D.
3087c37a-6ed3-4b72-9523-7f757fd27043
Brooks, D.
a3c528d9-fb8a-406c-bc92-56eff4985bcf
Campos, A.
7be710fb-7388-4941-b219-0a361094f5b4
Rosell, A. Carnero
d16324d8-7cb1-45a5-9270-dc11bdcda93d
Carretero, J.
081b0f5d-7e69-469c-a22d-5b851f9b8d1d
Castander, F.J.
b61356c2-f7f5-4da7-9322-b9eda0b0081a
Conselice, C.
4dcee95e-7364-4463-a5c9-e09f560a8e97
Costa, L.N. da
6e08c6a9-4c6c-40d0-a616-7fe36ed30707
Pereira, M.E.S.
31543982-a9f3-4226-be05-4a7583b27a1b
Davis, T.M.
466dfec4-c506-41fb-8b23-ea6c3c97e15b
Desai, S.
9fb3d948-7af8-43e1-8c9c-a11b6cc376ce
Diehl, H.T.
e9d80b5a-51f2-447a-a8eb-0e90cb3ed8ce
Doel, P.
00d69910-6075-4a52-9c7b-57e947a3b171
Ferrero, I.
7a160745-4d2d-449f-8a7c-d131841aff3b
Frieman, J.
6c34b206-537c-429c-9aeb-5df1d1e5e656
García-Bellido, J.
0d901d62-f268-4982-a08b-880c578ab3d8
Gaztañaga, E.
3a3f63dd-9666-448c-9ec6-10e53fc0dc1a
Giannini, G.
1002ec01-69d4-469f-99ed-b35111553a6e
Hinton, S.R.
9e2f00d6-7026-4491-a28e-17d5880f65d1
Hollowood, D.L.
0148abc6-4e30-4746-8b32-c7fe1ba285f7
Honscheid, K.
c505a24c-7e4d-4761-a84d-5262868372ae
James, D.J.
80eaf04f-0443-4656-8bc9-e2f3fdace1d1
Kuehn, K.
c8275e43-4cd6-44f5-9cce-8475d0e5f7de
Lee, S.
b9b22495-ff29-4546-a18e-27690662256e
Lidman, C.
70c80609-d55e-4ca6-b057-aed4a00b4b89
Marshall, J.L.
a80432e4-3031-4224-b1cf-313bc1bda078
Mena-Fernández, J.
77cf9e0c-d2b5-4188-a030-1de79f45f3af
Menanteau, F.
d971ef80-9290-4fb1-87bf-d9b5e1e80821
Miquel, R.
acd92fc5-f50f-4ae0-afe8-01db537b6e36
Palmese, A.
f3884b7e-f72b-4f52-8eda-de972ee05872
Pieres, A.
2a583c4b-d1e7-45d3-8841-2a961f7ecad9
Malagón, A.A. Plazas
0d2d1d4b-8cbe-4611-af41-f0b6efdb7df2
Roodman, A.
e4b6b3b1-7c56-4112-b281-2f63b38e99d5
Wiseman, P.
865f95f8-2200-46a8-bd5e-3ee30bb44072

Cipriano, L. Toribio San, Vicente, J. De and Sevilla-Noarbe, I. , et al. (2024) Dark Energy Survey deep field photometric redshift performance and training incompleteness assessment. Astronomy & Astrophysics, 686, [A38]. (doi:10.1051/0004-6361/202348956).

Record type: Article

Abstract

Context: the determination of accurate photometric redshifts (photo-zs) in large imaging galaxy surveys is key for cosmological studies. One of the most common approaches are machine learning techniques. These methods require a spectroscopic or reference sample to train the algorithms. Attention has to be paid to the quality and properties of these samples since they are key factors in the estimation of reliable photo-zs.

Aims: the goal of this work is to calculate the photo-zs for the Y3 DES Deep Fields catalogue using the DNF machine learning algorithm. Moreover, we want to develop techniques to assess the incompleteness of the training sample and metrics to study how incompleteness affects the quality of photometric redshifts. Finally, we are interested in comparing the performance obtained with respect to the EAzY template fitting approach on Y3 DES Deep Fields catalogue.

Methods: we have emulated -- at brighter magnitude -- the training incompleteness with a spectroscopic sample whose redshifts are known to have a measurable view of the problem. We have used a principal component analysis to graphically assess incompleteness and to relate it with the performance parameters provided by DNF. Finally, we have applied the results about the incompleteness to the photo-z computation on Y3 DES Deep Fields with DNF and estimated its performance.

Results: the photo-zs of the galaxies in the DES deep fields were computed with the DNF algorithm and added to the Y3 DES Deep Fields catalogue. We have developed some techniques to evaluate the performance in the absence of “true” redshift and to assess the completeness. We have studied the tradeoff in the training sample between the highest spectroscopic redshift quality versus completeness. We found some advantages in relaxing the highest-quality spectroscopic redshift requirements at fainter magnitudes in favour of completeness. The results achieved by DNF on the Y3 Deep Fields are competitive with the ones provided by EAzY, showing notable stability at high redshifts. It should be noted that the good results obtained by DNF in the estimation of photo-zs in deep field catalogues make DNF suitable for the future Legacy Survey of Space and Time (LSST) and Euclid data, which will have similar depths to the Y3 DES Deep Fields.

Text
2312.09721v3 - Author's Original
Available under License Creative Commons Attribution.
Download (1MB)
Text
aa48956-23 - Version of Record
Available under License Creative Commons Attribution.
Download (1MB)

More information

Accepted/In Press date: 24 February 2024
e-pub ahead of print date: 28 May 2024
Keywords: astro-ph.CO, astro-ph.GA

Identifiers

Local EPrints ID: 496348
URI: http://eprints.soton.ac.uk/id/eprint/496348
ISSN: 0004-6361
PURE UUID: 2ce9b6b8-5e40-4e22-adc5-dd45facfdddf
ORCID for P. Wiseman: ORCID iD orcid.org/0000-0002-3073-1512

Catalogue record

Date deposited: 12 Dec 2024 17:34
Last modified: 13 Dec 2024 02:53

Export record

Altmetrics

Contributors

Author: L. Toribio San Cipriano
Author: J. De Vicente
Author: I. Sevilla-Noarbe
Author: W.G. Hartley
Author: J. Myles
Author: A. Amon
Author: G.M. Bernstein
Author: A. Choi
Author: K. Eckert
Author: R.A. Gruendl
Author: I. Harrison
Author: E. Sheldon
Author: B. Yanny
Author: M. Aguena
Author: S.S. Allam
Author: O. Alves
Author: D. Bacon
Author: D. Brooks
Author: A. Campos
Author: A. Carnero Rosell
Author: J. Carretero
Author: F.J. Castander
Author: C. Conselice
Author: L.N. da Costa
Author: M.E.S. Pereira
Author: T.M. Davis
Author: S. Desai
Author: H.T. Diehl
Author: P. Doel
Author: I. Ferrero
Author: J. Frieman
Author: J. García-Bellido
Author: E. Gaztañaga
Author: G. Giannini
Author: S.R. Hinton
Author: D.L. Hollowood
Author: K. Honscheid
Author: D.J. James
Author: K. Kuehn
Author: S. Lee
Author: C. Lidman
Author: J.L. Marshall
Author: J. Mena-Fernández
Author: F. Menanteau
Author: R. Miquel
Author: A. Palmese
Author: A. Pieres
Author: A.A. Plazas Malagón
Author: A. Roodman
Author: P. Wiseman ORCID iD
Corporate Author: et al.

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×