The University of Southampton
University of Southampton Institutional Repository

Testing and combining transient spectral classification tools on 4MOST-like blended spectra

Testing and combining transient spectral classification tools on 4MOST-like blended spectra
Testing and combining transient spectral classification tools on 4MOST-like blended spectra
With the 4-meter Multi-Object Spectroscopic Telescope (4MOST) expected to provide an influx of transient spectra when it begins observations in early 2026 we consider the potential for real-time classification of these spectra. We investigate three extant spectroscopic transient classifiers: the Deep Automated Supernova and Host classifier (DASH), Next Generation SuperFit (NGSF) and SuperNova IDentification (SNID), with a focus on comparing the completeness and purity of the transient samples they produce. We manually simulate fibre losses critical for accurately determining host-contamination and use the 4MOST Exposure Time Calculator to produce realistic, 4MOST-like, host-galaxy contaminated spectra. We investigate the three classifiers individually and in all possible combinations. We find that a combination of DASH and NGSF can produce a SN Ia sample with a purity of 99.9% while successfully classifying 70% of SNe Ia. However, it struggles to classify non-SN Ia transients. We investigate photometric cuts to transient magnitude and the transient's fraction of total fibre flux, finding that both can be used to improve non-SN Ia transient classification completeness by 8--44% with SNe Ibc benefitting the most and superluminous (SL) SNe the least. Finally, we present an example classification plan for live classification and the predicted purities and completeness across five transient classes: Ia, Ibc, II, SL and non-SN transients. We find that it is possible to classify 75% of input spectra with >70% purity in all classes except non-SN transients. Precise values can be varied using different classifiers and photometric cuts to suit the needs of a given study.
astro-ph.GA, astro-ph.IM, astro-ph.SR, software: machine learning, techniques: spectroscopic, software: simulations, instrumentation: spectrographs, transients: supernovae
1365-2966
247-272
Milligan, A.
f454f337-48c5-44fa-a1ca-0d9c0ee97095
Hook, I.
129410c0-3253-43c7-91cd-a2941ba394e1
Frohmaier, C.
e752dabb-bbdc-430d-ac86-861ea58d0e1b
Smith, M.
3135dde4-5a6f-486b-a647-ee7f5bccaaeb
Dimitriadis, G.
dd2af84a-cae7-40a7-903c-80dc0aa873db
Kim, Y.-L.
add8d52a-ed65-486f-80a6-50c334580b92
Maguire, K.
bff26e2d-9727-471e-aa6f-c88e11a2b1a1
Möller, A.
90240402-7f83-45db-8eae-d6085024b031
Nicholl, M.
893de621-e32e-43f5-825b-6025a9cd8e39
Smartt, S.J.
148257f7-efab-459e-b932-228db4e2b1d0
Storm, J.
69dd3448-8b28-4586-be93-ff95e1a8a312
Sullivan, M.
2f31f9fa-8e79-4b35-98e2-0cb38f503850
Tempel, E.
e2780842-c4d1-4da8-9419-adfe7565b0ad
Wiseman, P.
865f95f8-2200-46a8-bd5e-3ee30bb44072
Cassarà, L.P.
f7d153c5-75e8-4ab9-a87a-262590330b2c
Demarco, R.
bc33c175-220e-43b9-8752-926018180596
Fritz, A.
a3a7d590-2def-4d0d-af37-a46ec776003e
Jiang, J.
95329273-2124-446e-9e16-b7df729367c9
Milligan, A.
f454f337-48c5-44fa-a1ca-0d9c0ee97095
Hook, I.
129410c0-3253-43c7-91cd-a2941ba394e1
Frohmaier, C.
e752dabb-bbdc-430d-ac86-861ea58d0e1b
Smith, M.
3135dde4-5a6f-486b-a647-ee7f5bccaaeb
Dimitriadis, G.
dd2af84a-cae7-40a7-903c-80dc0aa873db
Kim, Y.-L.
add8d52a-ed65-486f-80a6-50c334580b92
Maguire, K.
bff26e2d-9727-471e-aa6f-c88e11a2b1a1
Möller, A.
90240402-7f83-45db-8eae-d6085024b031
Nicholl, M.
893de621-e32e-43f5-825b-6025a9cd8e39
Smartt, S.J.
148257f7-efab-459e-b932-228db4e2b1d0
Storm, J.
69dd3448-8b28-4586-be93-ff95e1a8a312
Sullivan, M.
2f31f9fa-8e79-4b35-98e2-0cb38f503850
Tempel, E.
e2780842-c4d1-4da8-9419-adfe7565b0ad
Wiseman, P.
865f95f8-2200-46a8-bd5e-3ee30bb44072
Cassarà, L.P.
f7d153c5-75e8-4ab9-a87a-262590330b2c
Demarco, R.
bc33c175-220e-43b9-8752-926018180596
Fritz, A.
a3a7d590-2def-4d0d-af37-a46ec776003e
Jiang, J.
95329273-2124-446e-9e16-b7df729367c9

Milligan, A., Hook, I., Frohmaier, C., Smith, M., Dimitriadis, G., Kim, Y.-L., Maguire, K., Möller, A., Nicholl, M., Smartt, S.J., Storm, J., Sullivan, M., Tempel, E., Wiseman, P., Cassarà, L.P., Demarco, R., Fritz, A. and Jiang, J. (2025) Testing and combining transient spectral classification tools on 4MOST-like blended spectra. Monthly Notices of the Royal Astronomical Society, 543 (1), 247-272. (doi:10.1093/mnras/staf1419).

Record type: Article

Abstract

With the 4-meter Multi-Object Spectroscopic Telescope (4MOST) expected to provide an influx of transient spectra when it begins observations in early 2026 we consider the potential for real-time classification of these spectra. We investigate three extant spectroscopic transient classifiers: the Deep Automated Supernova and Host classifier (DASH), Next Generation SuperFit (NGSF) and SuperNova IDentification (SNID), with a focus on comparing the completeness and purity of the transient samples they produce. We manually simulate fibre losses critical for accurately determining host-contamination and use the 4MOST Exposure Time Calculator to produce realistic, 4MOST-like, host-galaxy contaminated spectra. We investigate the three classifiers individually and in all possible combinations. We find that a combination of DASH and NGSF can produce a SN Ia sample with a purity of 99.9% while successfully classifying 70% of SNe Ia. However, it struggles to classify non-SN Ia transients. We investigate photometric cuts to transient magnitude and the transient's fraction of total fibre flux, finding that both can be used to improve non-SN Ia transient classification completeness by 8--44% with SNe Ibc benefitting the most and superluminous (SL) SNe the least. Finally, we present an example classification plan for live classification and the predicted purities and completeness across five transient classes: Ia, Ibc, II, SL and non-SN transients. We find that it is possible to classify 75% of input spectra with >70% purity in all classes except non-SN transients. Precise values can be varied using different classifiers and photometric cuts to suit the needs of a given study.

Text
2502.12890v2 - Author's Original
Available under License Creative Commons Attribution.
Download (3MB)
Text
staf1419 - Version of Record
Available under License Creative Commons Attribution.
Download (61MB)

More information

Accepted/In Press date: 20 August 2025
e-pub ahead of print date: 28 August 2025
Published date: 17 September 2025
Keywords: astro-ph.GA, astro-ph.IM, astro-ph.SR, software: machine learning, techniques: spectroscopic, software: simulations, instrumentation: spectrographs, transients: supernovae

Identifiers

Local EPrints ID: 506692
URI: http://eprints.soton.ac.uk/id/eprint/506692
ISSN: 1365-2966
PURE UUID: 4eb35e73-a731-45a9-a239-688f436edf8f
ORCID for C. Frohmaier: ORCID iD orcid.org/0000-0001-9553-4723
ORCID for M. Sullivan: ORCID iD orcid.org/0000-0001-9053-4820
ORCID for P. Wiseman: ORCID iD orcid.org/0000-0002-3073-1512

Catalogue record

Date deposited: 14 Nov 2025 17:31
Last modified: 15 Nov 2025 03:03

Export record

Altmetrics

Contributors

Author: A. Milligan
Author: I. Hook
Author: C. Frohmaier ORCID iD
Author: M. Smith
Author: G. Dimitriadis
Author: Y.-L. Kim
Author: K. Maguire
Author: A. Möller
Author: M. Nicholl
Author: S.J. Smartt
Author: J. Storm
Author: M. Sullivan ORCID iD
Author: E. Tempel
Author: P. Wiseman ORCID iD
Author: L.P. Cassarà
Author: R. Demarco
Author: A. Fritz
Author: J. Jiang

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×