The University of Southampton
University of Southampton Institutional Repository

Automated detection of radiolucent foreign body aspiration on chest CT using deep learning

Automated detection of radiolucent foreign body aspiration on chest CT using deep learning
Automated detection of radiolucent foreign body aspiration on chest CT using deep learning
Radiolucent foreign body aspiration (FBA) remains diagnostically challenging due to its subtle imaging signatures on chest CT scans, often leading to delayed or missed diagnoses. We present a deep learning model integrating MedpSeg, a high-precision airway segmentation method, with a convolutional classifier to detect radiolucent FBA. The model was trained and validated across three independent cohorts, demonstrating consistent performance with accuracies above 90% and balanced recall–precision metrics. In a blinded independent evaluation cohort, the model outperformed expert radiologists in both recall (71.4% vs. 35.7%) and F1 score (74.1% vs. 52.6%), highlighting its potential to reduce missed cases (false negatives) and support clinical decision-making. This study illustrates the translational potential of artificial intelligence for addressing diagnostically complex and high-risk conditions, offering an effective tool to support radiologists in the assessment of suspected radiolucent foreign body aspiration. Code is available at https://github.com/ZheChen1999/FBA_DL.
2398-6352
Liu, Xiaofan
cd069fc5-dbbb-4675-a9c9-0b49d8c75223
Chen, Zhe
e6194fdb-60b2-4c88-b023-915df2de903f
Tang, Zhiyong
3f791533-8661-4edb-a71b-bb07c7e2e321
Yang, Xun
d6618dc8-21f6-4594-81e2-44b8c62a807a
Jiang, Yan
bfb552ef-8b12-47cf-a6cf-5fe6ee5f4024
Zheng, Dan
67283779-31a9-4585-b6b6-112b981d004a
Jiang, Fangfang
93f2902e-acd8-43b7-ab18-a7c7cb353daa
Ni, Fang
f8bdbe8c-6296-4e94-8c91-9fc5459808c1
Geng, Shuang
3a98f8e0-a376-4e9b-8cbd-1ebb4b3cc187
Qian, Qiong
83a80b7d-73aa-42d5-bcd6-4110586feb0e
Hao, Yan
87692714-04fe-444a-a70d-4210aa4b625e
Xu, Junjie
ed3290dd-57a7-494a-be22-f17fbdbd49f8
Wang, Yin
1ab704b7-415b-45e8-9aa3-d1ba2d669f02
Zhu, Mingyuan
cd7535fb-b8d2-4081-9b8d-da1ff3a87e81
Wang, Xiaoqing
71edf25b-7a12-4f82-8543-dacd4b54c188
Ewing, Rob M.
022c5b04-da20-4e55-8088-44d0dc9935ae
Belkhatir, Zehor
de90d742-a58f-4425-837c-20ff960fb9b6
Zhang, Guqin
dde1f454-796f-4f0f-a4e8-c7be684eda50
Nie, Hanxiang
b34280fe-f320-4c94-b3b3-d5ac03ec332e
Hu, Yi
1ff72ceb-3b29-42d4-8df0-e3be40ff5a55
Wang, Weihua
6dc93735-115f-4916-b158-6efeba203a77
Wang, Yihua
f5044a95-60a7-42d2-87d6-5f1f789e3a7e
et al.
Liu, Xiaofan
cd069fc5-dbbb-4675-a9c9-0b49d8c75223
Chen, Zhe
e6194fdb-60b2-4c88-b023-915df2de903f
Tang, Zhiyong
3f791533-8661-4edb-a71b-bb07c7e2e321
Yang, Xun
d6618dc8-21f6-4594-81e2-44b8c62a807a
Jiang, Yan
bfb552ef-8b12-47cf-a6cf-5fe6ee5f4024
Zheng, Dan
67283779-31a9-4585-b6b6-112b981d004a
Jiang, Fangfang
93f2902e-acd8-43b7-ab18-a7c7cb353daa
Ni, Fang
f8bdbe8c-6296-4e94-8c91-9fc5459808c1
Geng, Shuang
3a98f8e0-a376-4e9b-8cbd-1ebb4b3cc187
Qian, Qiong
83a80b7d-73aa-42d5-bcd6-4110586feb0e
Hao, Yan
87692714-04fe-444a-a70d-4210aa4b625e
Xu, Junjie
ed3290dd-57a7-494a-be22-f17fbdbd49f8
Wang, Yin
1ab704b7-415b-45e8-9aa3-d1ba2d669f02
Zhu, Mingyuan
cd7535fb-b8d2-4081-9b8d-da1ff3a87e81
Wang, Xiaoqing
71edf25b-7a12-4f82-8543-dacd4b54c188
Ewing, Rob M.
022c5b04-da20-4e55-8088-44d0dc9935ae
Belkhatir, Zehor
de90d742-a58f-4425-837c-20ff960fb9b6
Zhang, Guqin
dde1f454-796f-4f0f-a4e8-c7be684eda50
Nie, Hanxiang
b34280fe-f320-4c94-b3b3-d5ac03ec332e
Hu, Yi
1ff72ceb-3b29-42d4-8df0-e3be40ff5a55
Wang, Weihua
6dc93735-115f-4916-b158-6efeba203a77
Wang, Yihua
f5044a95-60a7-42d2-87d6-5f1f789e3a7e

Liu, Xiaofan, Chen, Zhe and Tang, Zhiyong , et al. (2025) Automated detection of radiolucent foreign body aspiration on chest CT using deep learning. npj Digital Medicine, 8, [647]. (doi:10.1038/s41746-025-02097-w).

Record type: Article

Abstract

Radiolucent foreign body aspiration (FBA) remains diagnostically challenging due to its subtle imaging signatures on chest CT scans, often leading to delayed or missed diagnoses. We present a deep learning model integrating MedpSeg, a high-precision airway segmentation method, with a convolutional classifier to detect radiolucent FBA. The model was trained and validated across three independent cohorts, demonstrating consistent performance with accuracies above 90% and balanced recall–precision metrics. In a blinded independent evaluation cohort, the model outperformed expert radiologists in both recall (71.4% vs. 35.7%) and F1 score (74.1% vs. 52.6%), highlighting its potential to reduce missed cases (false negatives) and support clinical decision-making. This study illustrates the translational potential of artificial intelligence for addressing diagnostically complex and high-risk conditions, offering an effective tool to support radiologists in the assessment of suspected radiolucent foreign body aspiration. Code is available at https://github.com/ZheChen1999/FBA_DL.

Text
AI in detecting FBA - Accepted Manuscript
Available under License Creative Commons Attribution.
Download (3MB)
Text
s41746-025-02097-w - Version of Record
Available under License Creative Commons Attribution.
Download (2MB)

More information

Accepted/In Press date: 16 October 2025
e-pub ahead of print date: 10 November 2025
Published date: 10 November 2025

Identifiers

Local EPrints ID: 506856
URI: http://eprints.soton.ac.uk/id/eprint/506856
ISSN: 2398-6352
PURE UUID: b99e2828-f3c0-4250-a681-88affa8c023f
ORCID for Rob M. Ewing: ORCID iD orcid.org/0000-0001-6510-4001
ORCID for Zehor Belkhatir: ORCID iD orcid.org/0000-0001-7277-3895
ORCID for Yihua Wang: ORCID iD orcid.org/0000-0001-5561-0648

Catalogue record

Date deposited: 19 Nov 2025 17:35
Last modified: 20 Nov 2025 03:04

Export record

Altmetrics

Contributors

Author: Xiaofan Liu
Author: Zhe Chen
Author: Zhiyong Tang
Author: Xun Yang
Author: Yan Jiang
Author: Dan Zheng
Author: Fangfang Jiang
Author: Fang Ni
Author: Shuang Geng
Author: Qiong Qian
Author: Yan Hao
Author: Junjie Xu
Author: Yin Wang
Author: Mingyuan Zhu
Author: Xiaoqing Wang
Author: Rob M. Ewing ORCID iD
Author: Zehor Belkhatir ORCID iD
Author: Guqin Zhang
Author: Hanxiang Nie
Author: Yi Hu
Author: Weihua Wang
Author: Yihua Wang ORCID iD
Corporate Author: et al.

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×